OPERATIONAL EQUIVALENCE AND CAUSAL STRUCTURE

Gábor Hofer-Szabó

 $HUN\mbox{-}REN,\ Research\ Centre\ for\ the\ Humanities,\ Budapest$

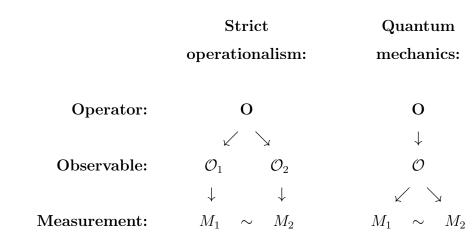
Operational theory

 $\{p(X|M \wedge P) : \text{ for all } M, P\}$

Operational equivalence

$$M_1 \sim M_2$$
: $p(X|M_1 \wedge P) = p(X|M_2 \wedge P)$ for all P

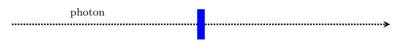
Operator: O \swarrow \searrow Measurement: $M_1 \sim M_2$


Main message

Ontological models for quantum mechanics can be different with respect to causal structure, contextuality, fine-tuning, etc. when operators are realized by operationally equivalent but different measurements.

Observables

When do two measurements measure the same observable?


Observables

Observables

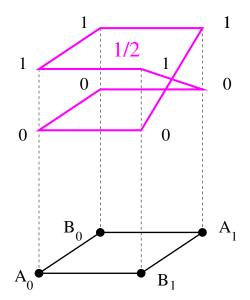
- If both measurements can be performed simultaneously on each system; or
- each preparation is an eigenstate for both measurements.

Polarization

 M_1 : polaroid

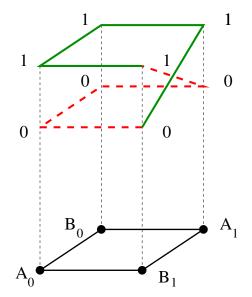
Polarization

 M_2 : birefringent crystal

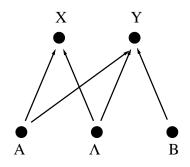

Ontological models

$$\{p(\lambda|P): \quad \text{for all } P\}$$

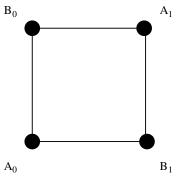
$$\{p(X|M \wedge \lambda): \quad \text{for all } M, \lambda\}$$

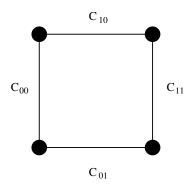

Ontological models

$$p(X|M \wedge P) = \sum_{\lambda} p(X|M \wedge \lambda) p(\lambda|P)$$

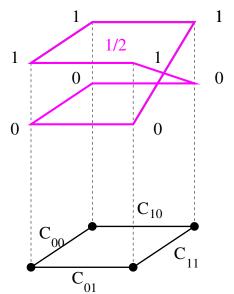

An operational theory: the PR box

An ontological model: the PR box

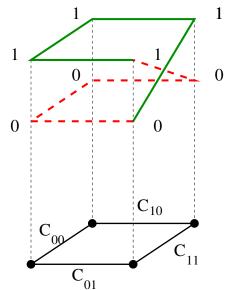

Causal structure of the PR box


- Bell's inequality
- Contextuality
- Fine-tuning

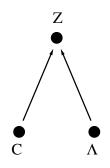
Old measurements



New measurements



$$C_{00}^{(1)} \sim C_{01}^{(1)} \sim A_0$$
 $C_{10}^{(1)} \sim C_{11}^{(1)} \sim A_1$ $C_{00}^{(2)} \sim C_{10}^{(2)} \sim B_0$ $C_{01}^{(2)} \sim C_{11}^{(2)} \sim B_1$


An operational theory: the PR box

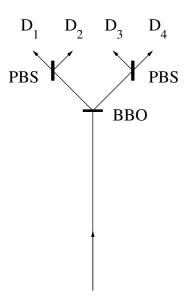
An ontological model: the PR box

Causal structure of the models

- No Bell's inequality
- No contextuality
- No fine-tuning

$$egin{array}{lll} oldsymbol{\sigma}_z \otimes oldsymbol{\sigma}_z & oldsymbol{\sigma}_z \otimes oldsymbol{\sigma}_z \ & oldsymbol{\sigma}_x \otimes oldsymbol{\sigma}_x & oldsymbol{\sigma}_x \otimes oldsymbol{\sigma}_x \ & oldsymbol{\sigma}_x \otimes oldsymbol{\sigma}_x & oldsymbol{\sigma}_x \otimes oldsymbol{\sigma}_y \ & oldsymbol{\sigma}_y \otimes oldsymbol{\sigma}_y \otimes oldsymbol{\sigma}_y \ & oldsymbol{\sigma}_y \otimes oldsymbol{\sigma}_$$

Operator:
$$\sigma_y \otimes \sigma_y$$
 \swarrow \searrow Measurement: $A_y \wedge B_y \sim C^{(3)} \sim D^{(3)}$


 $A_y \wedge B_y$: Measure the linear polarization of the left photon in direction y

and

measure the linear polarization of the right photon in direction y

and

registers the product of the two outcomes

 $C^{(3)}$: Consider the operators in the third column

$$oldsymbol{\sigma}_z \otimes oldsymbol{\sigma}_z \qquad oldsymbol{\sigma}_x \otimes oldsymbol{\sigma}_x \qquad oldsymbol{\sigma}_y \otimes oldsymbol{\sigma}_y$$

with four common eigenvectors

$$|\Psi^{---}\rangle \qquad |\Psi^{++-}\rangle \qquad |\Psi^{+-+}\rangle \qquad |\Psi^{-++}\rangle$$

Perform a Bell state measurement on the photon pair corresponding to these eigenvectors

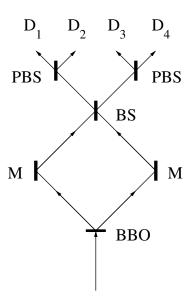
and

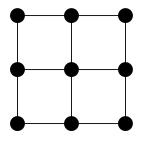
consider only the third index

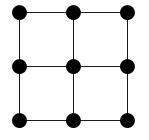
 $D^{(3)}$: Consider the operators in the third row

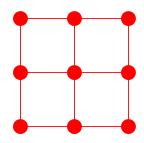
$$\sigma_z \otimes \sigma_x$$
 $\sigma_x \otimes \sigma_z$ $\sigma_y \otimes \sigma_y$

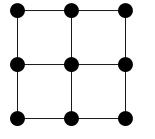

with four common eigenvectors

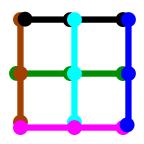

$$|\Phi^{+++}\rangle$$
 $|\Phi^{--+}\rangle$ $|\Phi^{-+-}\rangle$ $|\Phi^{+--}\rangle$

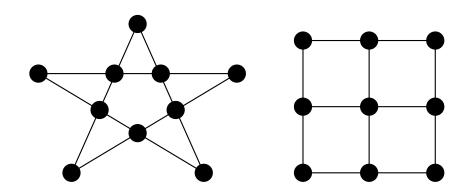

Perform a Bell state measurement on the photon pair corresponding to these eigenvectors


and

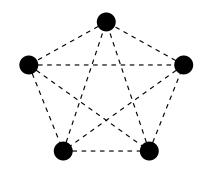

consider only the third index

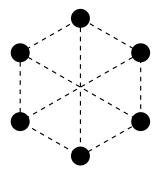





Conclusions

The realization of an operator in quantum mechanics by different measurements can give rise to different ontological models with respect to contextuality, causal structure, fine-tuning, etc.


More on that ...


• Gábor Hofer-Szabó, "Operational equivalence and causal structure" (submitted).

The GHZ and the Peres-Mermin graph

The GHZ and the Peres-Mermin line graph

Noncontextuality

An ontological model for QM is **noncontextual** if

• every ontic state determines the probability distribution of outcomes of every measurement independently of what other measurements are simultaneously performed (simultaneous noncontextuality)

• any two measurements which are represented by the same self-adjoint operator have the same probability distribution of outcomes in every ontic state (measurement noncontextuality)

Noncontextuality

• Simultaneous noncontextuality:

$$p(X|M \wedge \Lambda) = p(X|M \wedge M' \wedge \Lambda)$$
 for all Λ

• Measurement noncontextuality:

If
$$p(X|M \wedge P) = p(X'|M' \wedge P)$$
 for all P
then $p(X|M \wedge \Lambda) = p(X'|M' \wedge \Lambda)$ for all Λ