On the localization of the common cause

Gábor Hofer-Szabó

Institute of Philosophy

Research Centre for the Humanities, Budapest

Email: szabo.gabor@btk.mta.hu

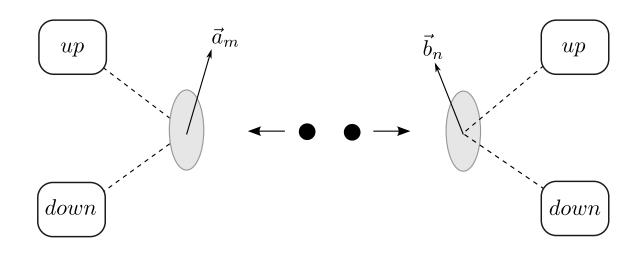
Project

• Question: How the probabilistic and spatiotemporal characterizations of the common cause relate to one another?

Project

- I. Probabilistic common causal explanation
- II. What is a local physical theory?
- III. Bell's local causality
- IV. Localization of the common cause in a local physical theory

Probabilistic common causal explanation



- Classical probability measure space: (Σ, p)
- Measurement choices: $a_m, b_n \in \Sigma$
- Measurement outcomes: $A_m, B_n \in \Sigma$
- Conditional correlations:

$$p(A_m B_n | a_m b_n) \neq p(A_m | a_m) p(B_n | b_n)$$

Probabilistic common causal explanation

• Common causal explanation: a partition $\{C_k\}$ in Σ

$$p(A_m B_n | a_m b_n C_k) = p(A_m | a_m b_n C_k) \, p(B_n | a_m b_n C_k)$$
 (screening-off)
$$p(A_m | a_m b_n C_k) = p(A_m | a_m C_k)$$
 (locality)
$$p(B_n | a_m b_n C_k) = p(B_n | b_n C_k)$$
 (locality)
$$p(a_m b_n C_k) = p(a_m b_n) \, p(C_k)$$
 (no-conspiracy)

Probabilistic common causal explanation

• Common causal explanation: a partition $\{C_k\}$ in Σ

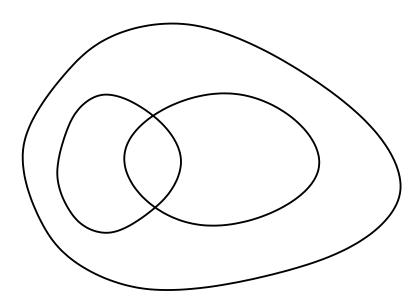
$$p(A_m B_n | a_m b_n C_k) = p(A_m | a_m b_n C_k) \, p(B_n | a_m b_n C_k)$$
 (screening-off)
$$p(A_m | a_m b_n C_k) = p(A_m | a_m C_k)$$
 (locality)
$$p(B_n | a_m b_n C_k) = p(B_n | b_n C_k)$$
 (locality)
$$p(a_m b_n C_k) = p(a_m b_n) \, p(C_k)$$
 (no-conspiracy)

- Common causal explanation ⇒ Bell's inequality
- Bell's inequality is violated ⇒ No common causal explanation of EPR.

II. What is a local physical theory?

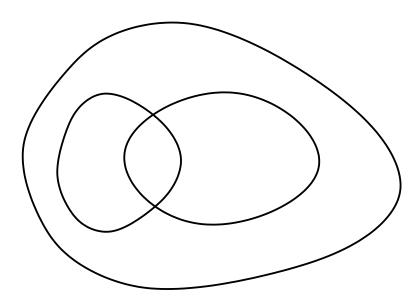
Minkowski spacetime:

Directed poset: (\mathcal{K},\subseteq)

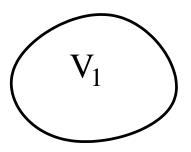


Minkowski spacetime:

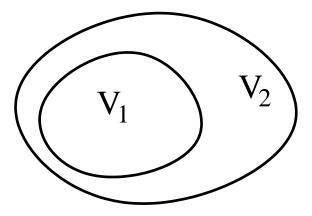
Net: $\{\mathcal{N}(V), V \in \mathcal{K}\}$



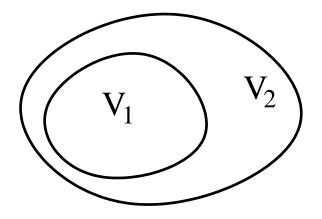
Isotony:



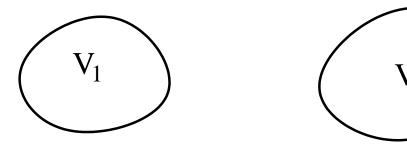
Isotony: if $V_1 \subset V_2$



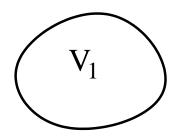
Isotony: if $V_1 \subset V_2$, then $\mathcal{N}(V_1)$ is a subalgebra of $\mathcal{N}(V_2)$

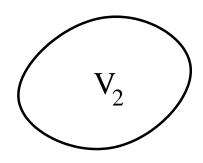


Microcausality (Einstein causality):

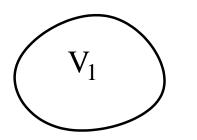


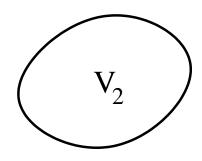
Microcausality (Einstein causality): $[\mathcal{N}(V_1), \mathcal{N}(V_2)] = 0$





Microcausality \iff No-signalling, parameter independence



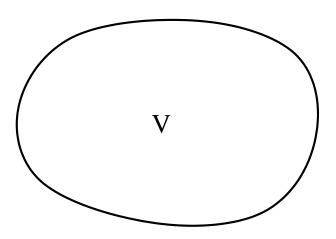


Covariance: spacetime symmetries are represented on $\mathcal N$

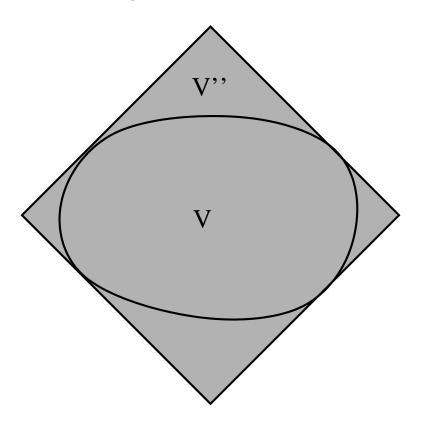
Local physical theory: an isotone, microcausal and covariant net

It embraces local classical and quantum theories

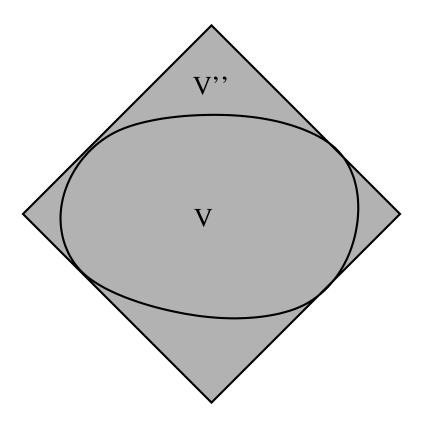
Local primitive causality:



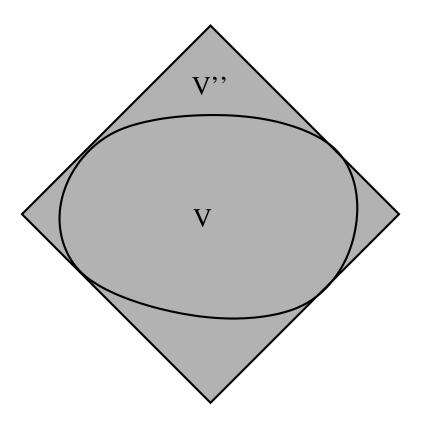
Local primitive causality:



Local primitive causality: $\mathcal{N}(V) = \mathcal{N}(V'')$

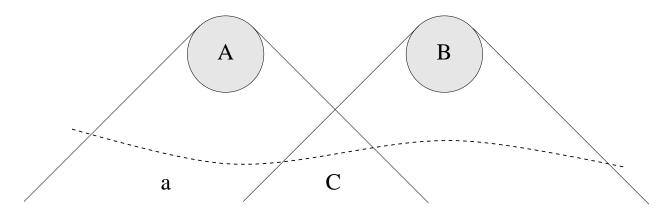


Local primitive causality \iff **Microcausality**



III. Bell's local causality

"Let C denote a specification of all beables, of some theory, belonging to the overlap of the backward light cones of spacelike regions A and B.



Let a be a specification of some beables from the remainder of the backward light cone of A, and B of some beables in the region B. Then in a *locally causal theory*

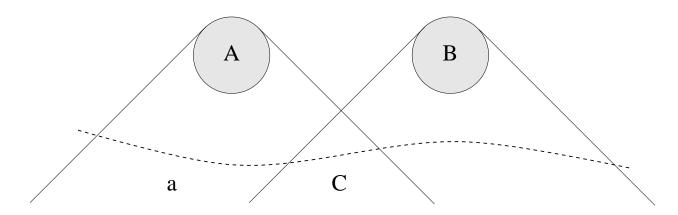
$$p(A|a,C,B) = p(A|a,C) \tag{1}$$

whenever both probabilities are given by the theory." (Bell, 1987, p. 54)

Remark:

- Local primitive causality is a dependence relation; local causality is an independence relation.
- Local primitive causality does not rely on the notion of state, it is a property of the net exclusively; local causality does depend on the state.

"Let C denote a specification of all beables, of some theory, belonging to the overlap of the backward light cones of spacelike regions A and B.



Let a be a specification of some beables from the remainder of the backward light cone of A, and B of some beables in the region B. Then in a *locally causal theory*

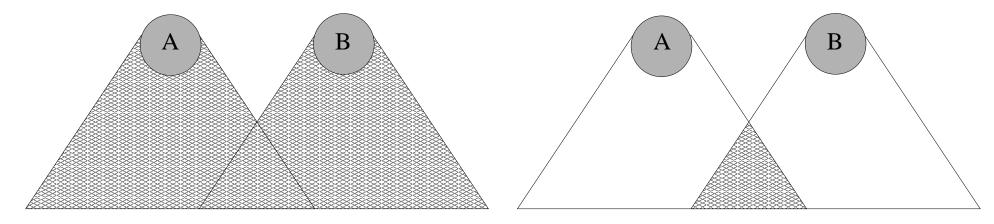
$$p(A|a,C,B) = p(A|a,C) \tag{2}$$

whenever both probabilities are given by the theory." (Bell, 1987, p. 54)

Two assumptions: the common cause is

- (i) "the specification of all beables of the theory", and
- (ii) it is located in the "overlap of the backward light cones".

Two pasts:

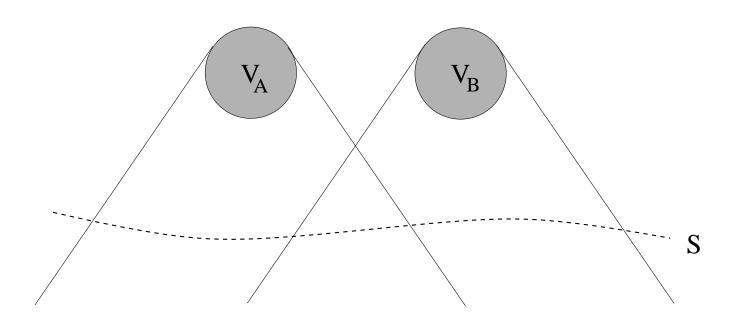


Weak past: $I_{-}(V_A) \cup I_{-}(V_B)$

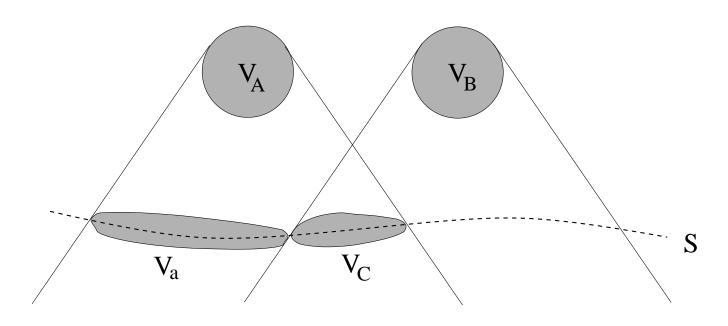
Strong past: $I_{-}(V_A) \cap I_{-}(V_B)$

Two assumptions: C_k is

- (i) is an atom of the appropriate local algebra,
- (ii) and it is located in the strong past.

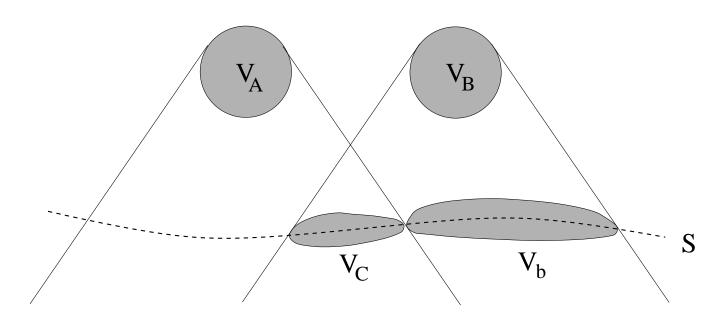


Definition. A local physical theory represented by a net $\{\mathcal{N}(V), V \in \mathcal{K}\}$ is called *locally causal*, if for any pair $A \in \mathcal{N}(V_A)$ and $B \in \mathcal{N}(V_B)$ of projections supported in spacelike separated regions $V_A, V_B \in \mathcal{K}$ and for every locally faithful state ϕ establishing a correlation between A and B and for every Cauchy surface \mathcal{S} (lying past to V_A and V_B), the following is true:



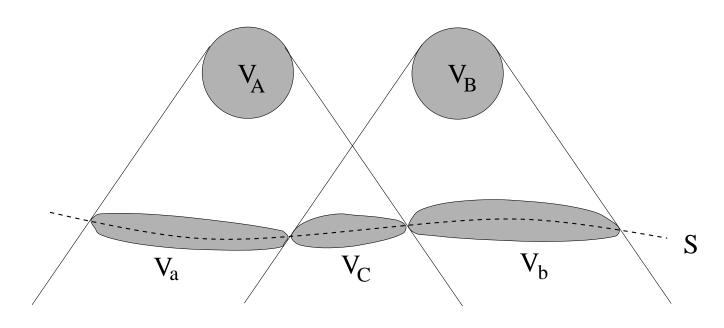
For any $a_m \in \mathcal{N}(V_a)$ and atomic event $C_k \in \mathcal{N}(V_C)$

$$p(A_m|a_mC_kB_n) = p(A_m|a_mC_k)$$



For any $b_n \in \mathcal{N}(V_b)$ and atomic event $C_k \in \mathcal{N}(V_C)$

$$p(B_n|A_mC_kb_n) = p(B_n|b_nC_k)$$



For any $a_m \in \mathcal{N}(V_a)$, $b_n \in \mathcal{N}(V_b)$ and atomic event $C_k \in \mathcal{N}(V_C)$

$$p(A_m|a_mC_kB_n) = p(A_m|a_mC_k)$$
(3)

$$p(B_n|A_mC_kb_n) = p(B_n|b_nC_k)$$
(4)

$$p(A_m|a_mC_kb_n) = p(A_m|a_mC_k)$$
 (5)

$$p(B_n|a_mC_kb_n) = p(B_n|b_nC_k) \tag{6}$$

(3)-(6) are just screening-off and locality!

$$p(A_m B_n | a_m b_n C_k) = p(A_m | a_m b_n C_k) p(B_n | a_m b_n C_k)$$

$$p(A_m | a_m b_n C_k) = p(A_m | a_m C_k)$$

$$p(B_n | a_m b_n C_k) = p(B_n | b_n C_k)$$

But. No-conspiracy cannot be 'derived' from Bell's notion of local causality, it is an independent assumption!

$$p(a_m b_n C_k) = p(a_m b_n) p(C_k)$$

Two assumptions: C_k is

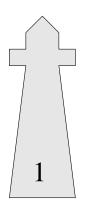
- (i) is an atom of the appropriate local algebra,
- (ii) and it is located in the strong past.

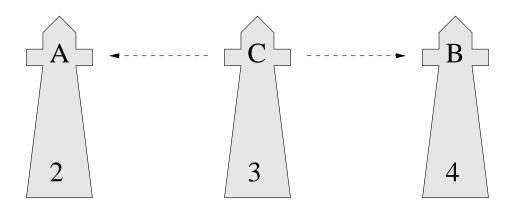
Two assumptions: C_k is

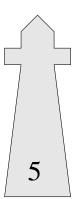
- (i) is an atom of the appropriate local algebra,
- (ii) and it is located in the strong past.

Question: How non-atomic or weak common causes relate to Bell's notion of local causality?

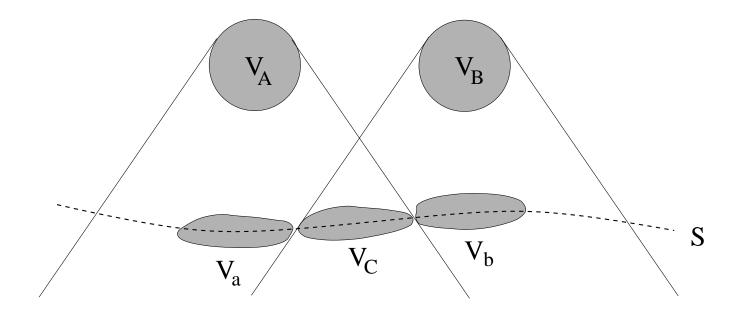
Strong common cause: $\{C_k^S\}$



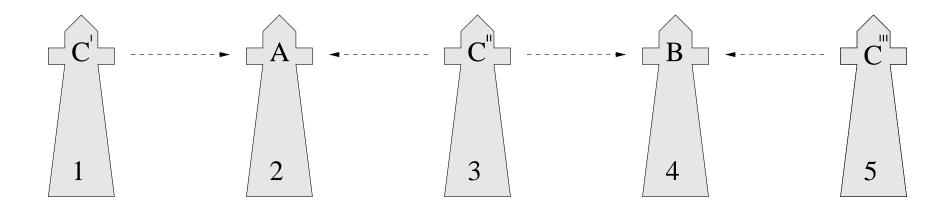




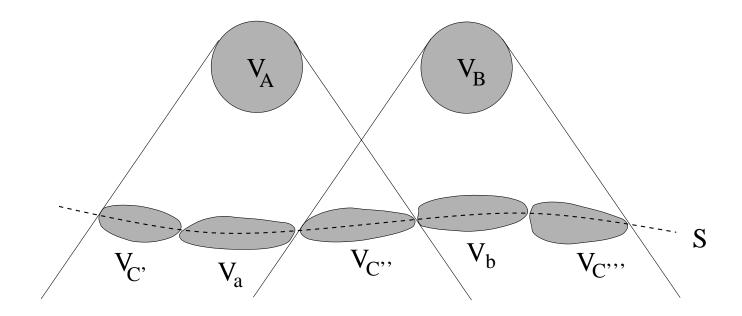
Strong common cause: $\{C_k^S\}$



Weak common cause: $\{C_{jkl}^W:=C_j'C_k''C_l'''\}$

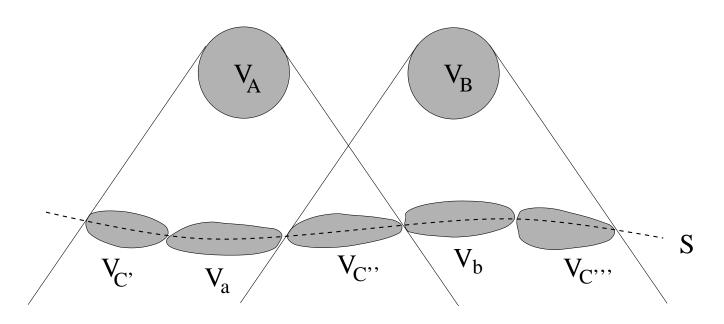


Weak common cause: $\{C_{jkl}^W := C_j'C_k''C_l'''\}$

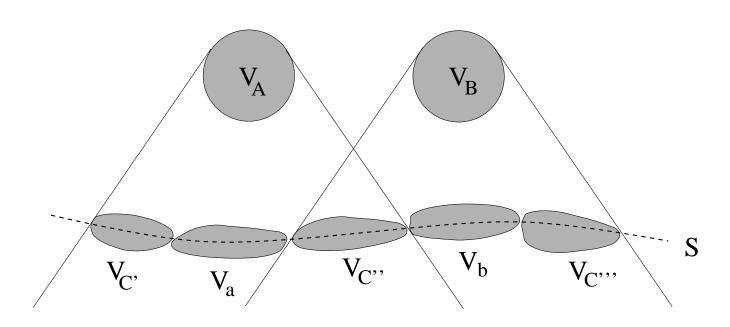


Claim 1. The probabilistic characterization of the common cause cannot be justified by Bell's local causality, if $\{C_k^S\}$ is a non-atomic partition of $\mathcal{N}(V_C)$.

Claim 2. The probabilistic characterization of the common cause can be justified by Bell's local causality, if $\{C_{jkl}^W := C_j'C_k''C_l'''\}$ is a weak common cause where and $\{C_j''\}$ is an atomic partition of $\mathcal{N}(V_{C''})$.



Question: What is the relation between the strong common cause and the weak common cause in the classical case?

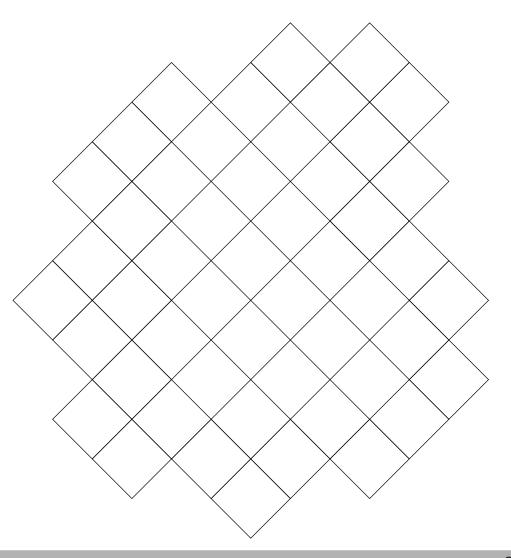


Proposition 1. Let $\{C_{jkl}^W:=C_j'C_k''C_l'''\}$ be a *weak* common cause of the correlation (A,B) in the classical probability space (Σ,p) . Then if local causality and independence

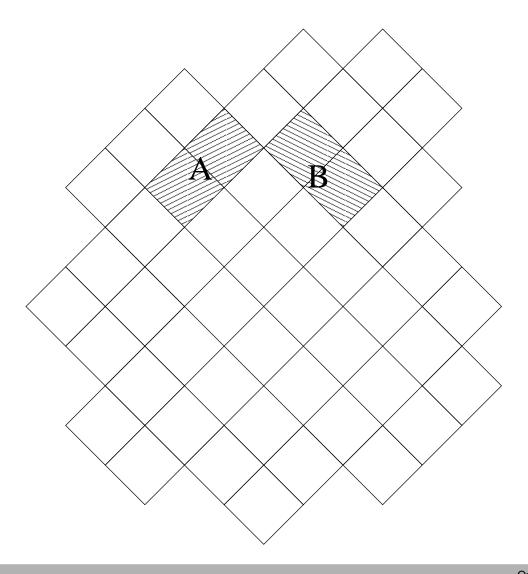
$$p(C_j'C_k''C_l''') = p(C_j')p(C_k'')p(C_l''')$$

holds, then $\{C_k''\}$ is a *strong* common cause of the correlation.

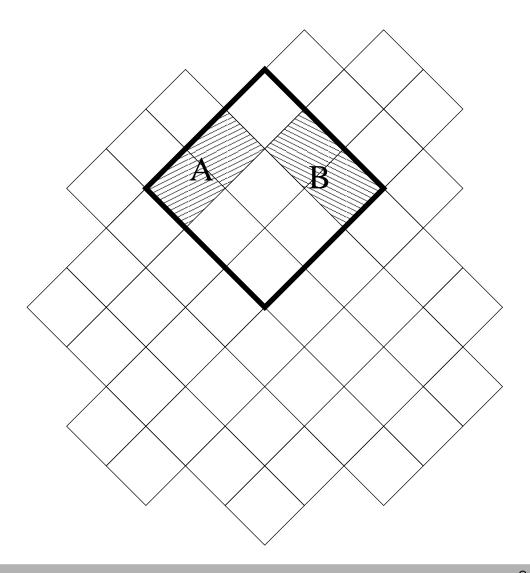
Two dimensional discrete Minkowski spacetime:



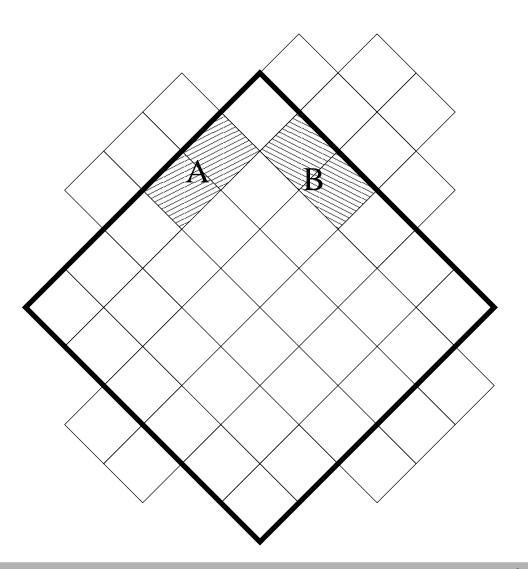
Two events:



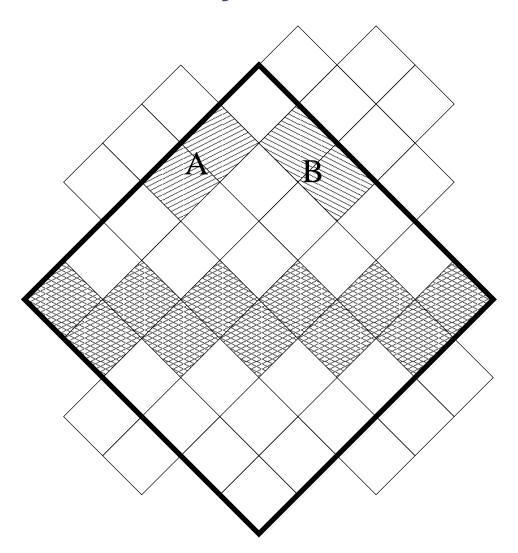
Correlation:



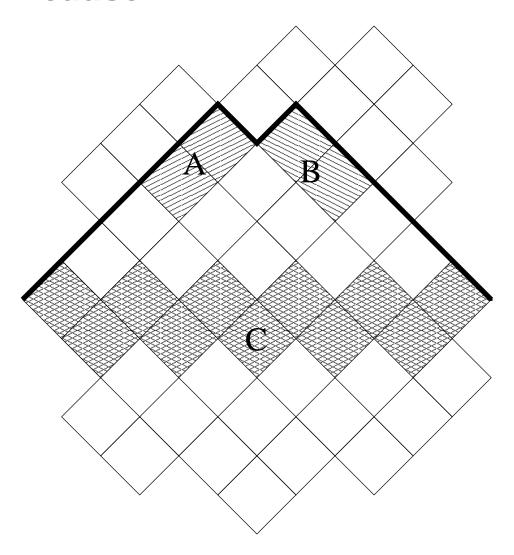
By isotony:



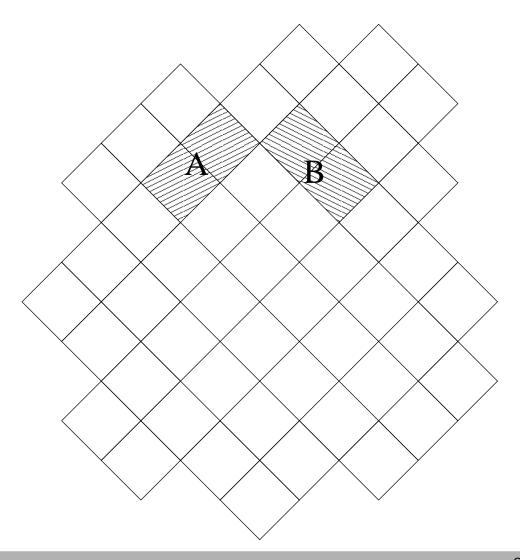
By local primitive causality:



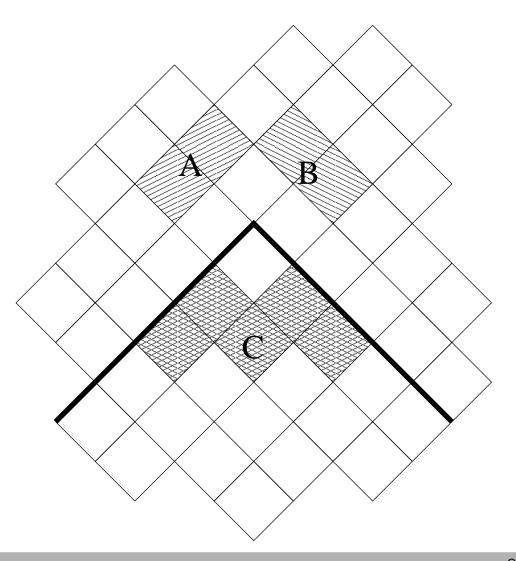
Weak common cause:



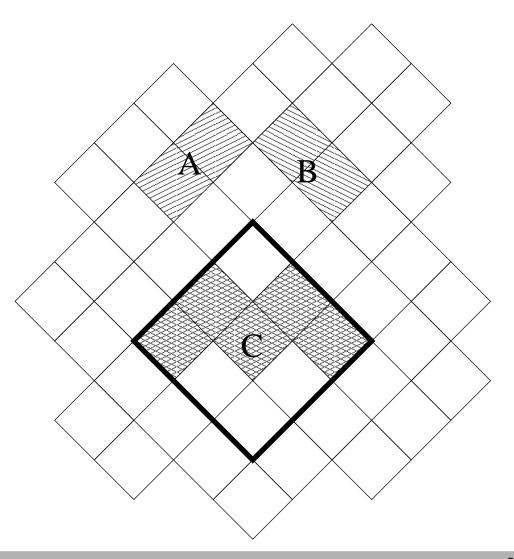
Why not a strong common cause?



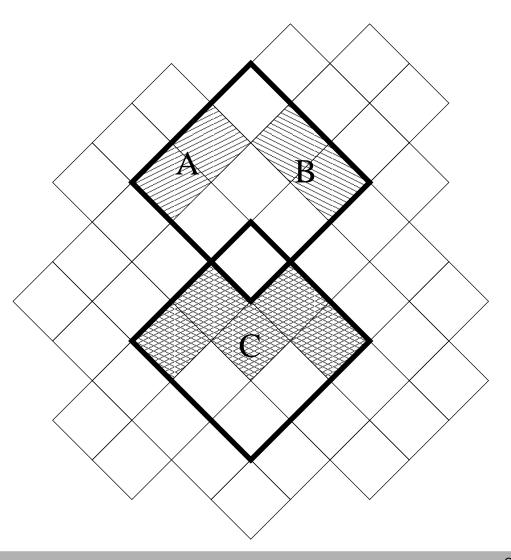
Strong common cause:



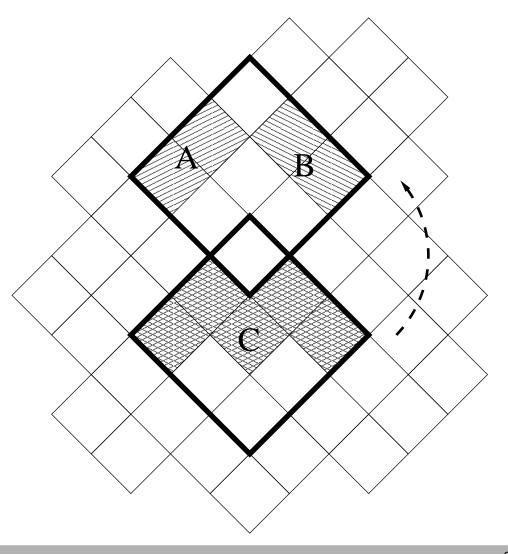
By local primitive causality:



By isotony?

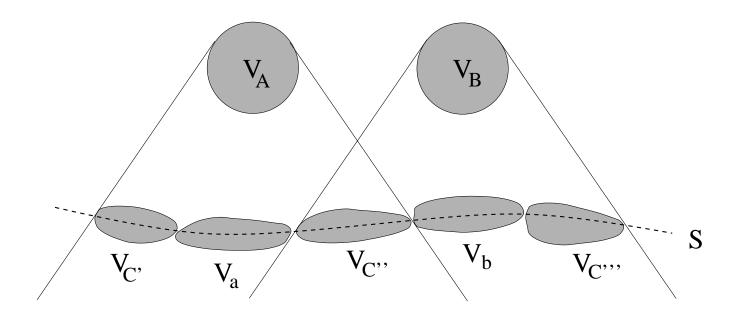


Dynamics is needed!



Conjecture

Question: Does Proposition 1 have anything to do with the fact that weak common causes are naturally arising in algebraic quantum field theory?



Conclusion

The probabilistic characterization of a

- strong, atomic common causes can,
- strong, non-atomic common causes cannot,
- weak, atomic common causes can,
- no-conspiracy cannot

be justified by Bell's local causality.

References

- G. Hofer-Szabó, P. Vecsernyés, "Reichenbach's Common Cause Principle in AQFT with locally finite degrees of freedom," Found. Phys., 42, 241-255 (2012a).
- G. Hofer-Szabó, P. Vecsernyés, "Noncommuting local common causes for correlations violating the Clauser–Horne inequality," J. Math. Phys., 53, 122301 (2012b).
- G. Hofer-Szabó, P. Vecsernyés, "Noncommutative Common Cause Principles in algebraic quantum field theory," J. Math. Phys., 54, 042301 (2013a).
- G. Hofer-Szabó, P. Vecsernyés, "Bell inequality and common causal explanation in algebraic quantum field theory," Stud. Hist. Phil. Mod. Phys., (submitted) (2013b).
- V.F. Müller and P. Vecsernyés, "The phase structure of G-spin models", to be published.
- F. Nill and K. Szlachányi, "Quantum chains of Hopf algebras with quantum double cosymmetry" *Commun. Math. Phys.*, **187** 159-200 (1997).
- M. Rédei, "Reichenbach's Common Cause Principle and quantum field theory," Found. Phys., 27, 1309–1321 (1997).
- M. Rédei and J. S. Summers, "Local primitive causality and the Common Cause Principle in quantum field theory," Found. Phys., 32, 335-355 (2002).
- H. Reichenbach, The Direction of Time, (University of California Press, Los Angeles, 1956).
- K. Szlachányi and P. Vecsernyés, "Quantum symmetry and braid group statistics in G-spin models" Commun. Math. Phys., 156, 127-168 (1993).

Reichenbachian common cause

- Classical probability space: (Σ, p)
- Positive correlation: $A, B \in \Sigma$

• Reichenbachian common cause: $C \in \Sigma$

$$p(AB|C) = p(A|C)p(B|C)$$

$$p(AB|\overline{C}) = p(A|\overline{C})p(B|\overline{C})$$

$$p(A|C) > p(A|\overline{C})$$

$$p(B|C) > p(B|\overline{C})$$

Common cause system

• Correlation: $A, B \in \Sigma$

$$p(AB) \neq p(A)p(B)$$

• Common cause system (CCS): partition $\{C_k\}_{k\in K}$ in Σ

$$p(AB|C_k) = p(A|C_k) p(B|C_k)$$

• Common cause: CCS of size 2.

Non-classical common cause system

- Non-classical probability space: $(\mathcal{P}(\mathcal{N}), \phi)$
- Correlation: $A, B \in \mathcal{P}(\mathcal{N})$

$$\phi(AB) \neq \phi(A)\phi(B)$$

Non-classical common cause system

• (Non-classical) CCS: partition $\{C_k\}_{k\in K}$ in $\mathcal{P}(\mathcal{N})$

$$(\phi \circ E_c)(AB|C_k) = (\phi \circ E_c)(A|C_k)(\phi \circ E_c)(B|C_k)$$

Conditional expectation:

$$E_c: \mathcal{N} \to \mathcal{C}, \ A \mapsto \sum_{k \in K} C_k A C_k$$

• Commuting / Noncommuting CCS: $\{C_k\}_{k\in K}$ is commuting / not commuting with A and B

Common Cause Principles

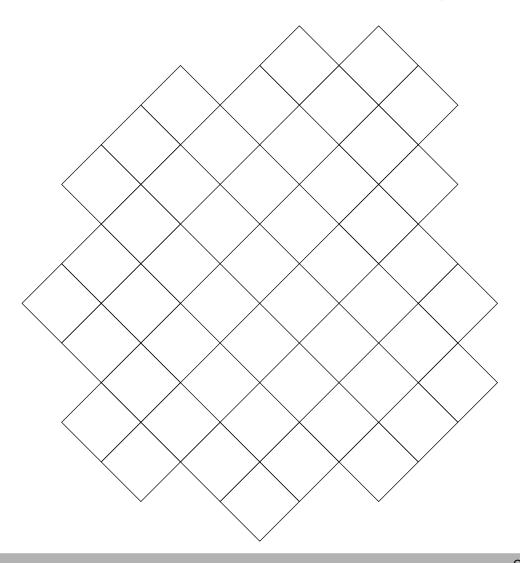
Common Cause Principles: for any pair $A \in \mathcal{A}(V_A)$ and $B \in \mathcal{A}(V_B)$ of projections supported in spacelike separated regions and for every locally faithful state ϕ , there exists a *nontrivial* commuting/noncommuting common cause system $\{C_k\}_{k \in K} \subset \mathcal{A}(V_C)$ of the correlation such that V_C is in $P^W(V_A, V_B)$, $P^C(V_A, V_B)$ or $P^S(V_A, V_B)$.

Common Cause Principles

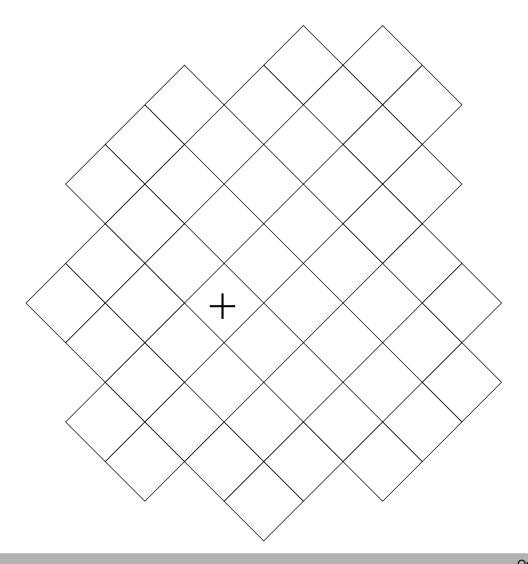
- Weak Commutative Common Cause Principle: holds in Poincaré covariant AQFT (Rédei and Summers, 2002)
- Weak Commutative Common Cause Principle: does not hold in lattice AQFT (Hofer-Szabó and Vecsernyés, 2012)
- Weak Noncommutative Common Cause Principle: does hold in UHF-type AQFT (Hofer-Szabó and Vecsernyés, 2013)
- (Strong) Common Cause Principles: does not hold in AQFT (conjecture)

IV. Classical nets

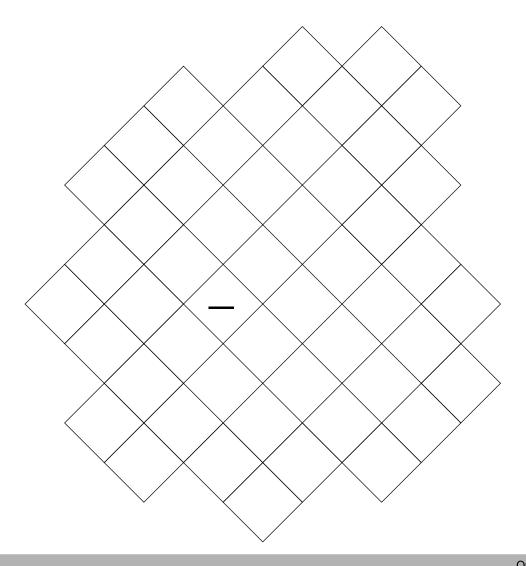
Two dimensional discrete Minkowski spacetime:

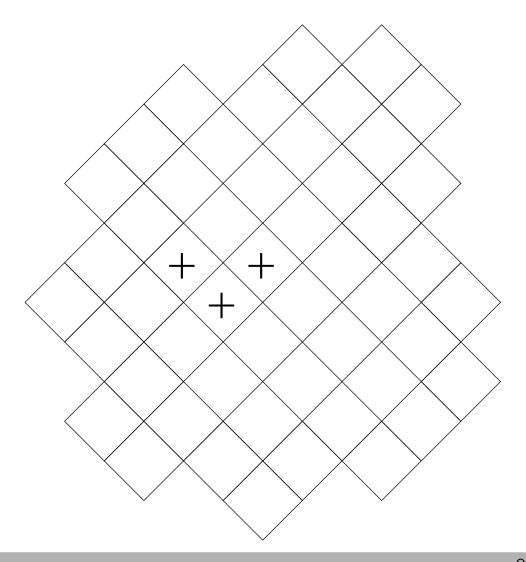


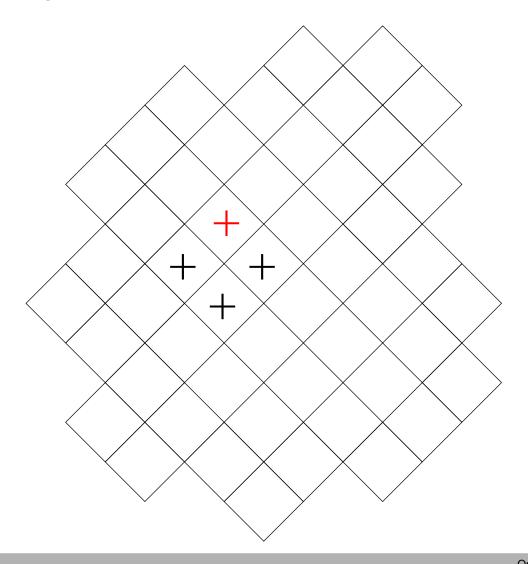
Local algebras:

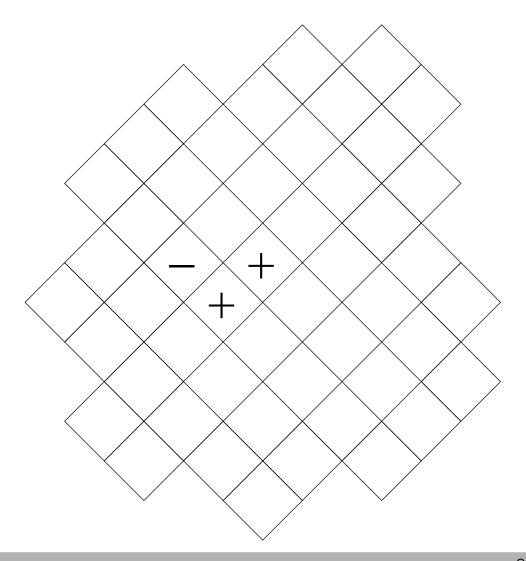


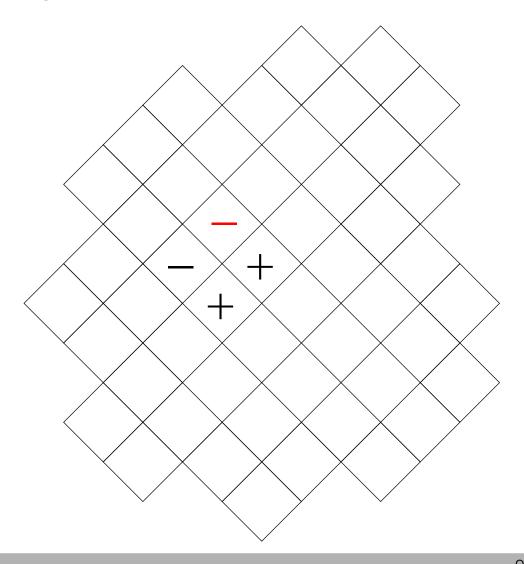
Local algebras:



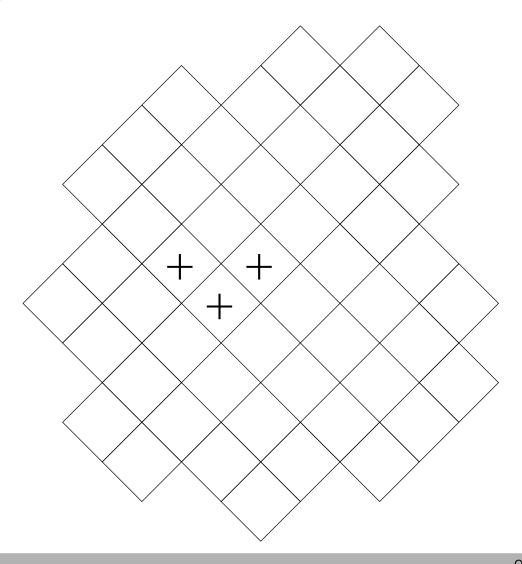




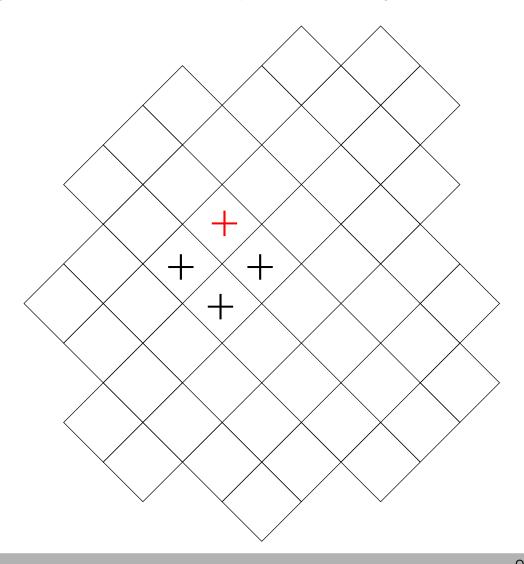




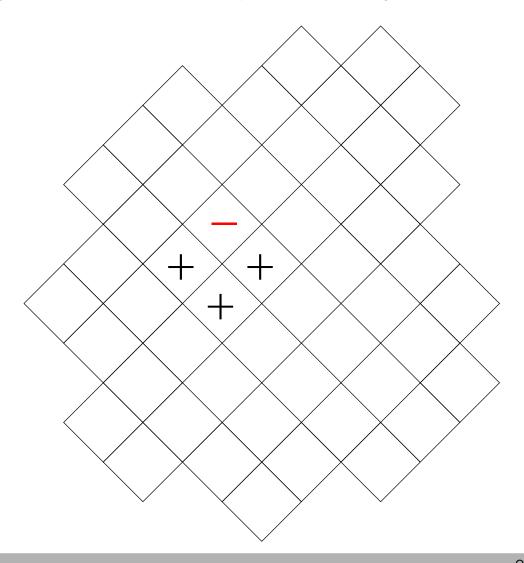
Stochastic dynamics:



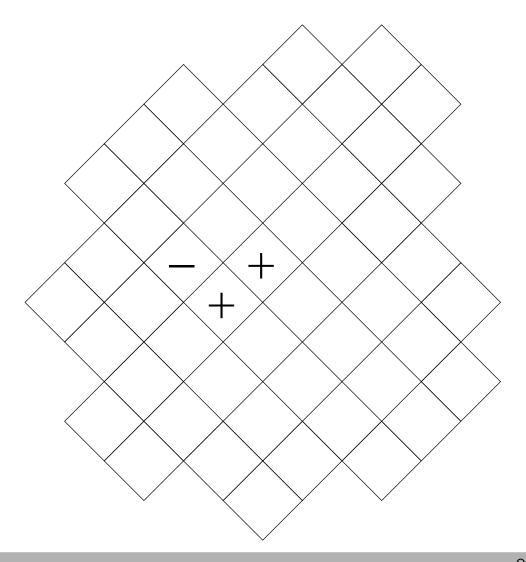
Stochastic dynamics: with probability *p*



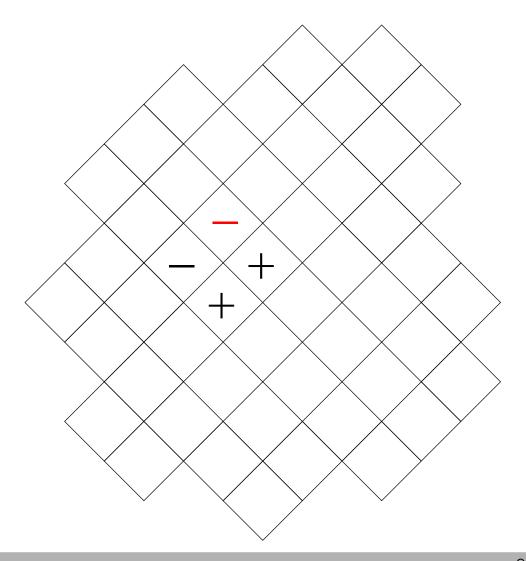
Stochastic dynamics: with probability 1-p



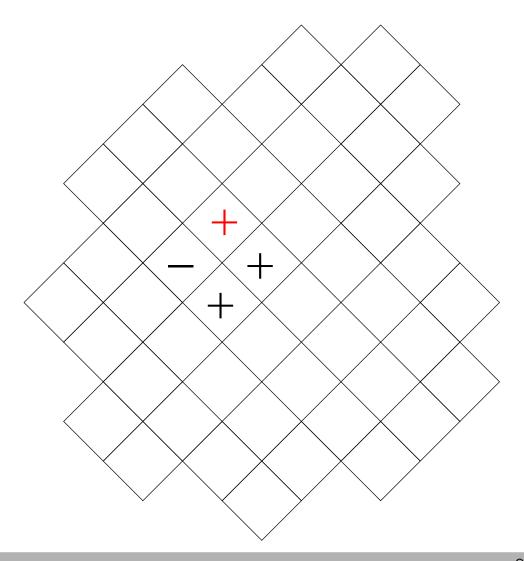
Stochastic dynamics:



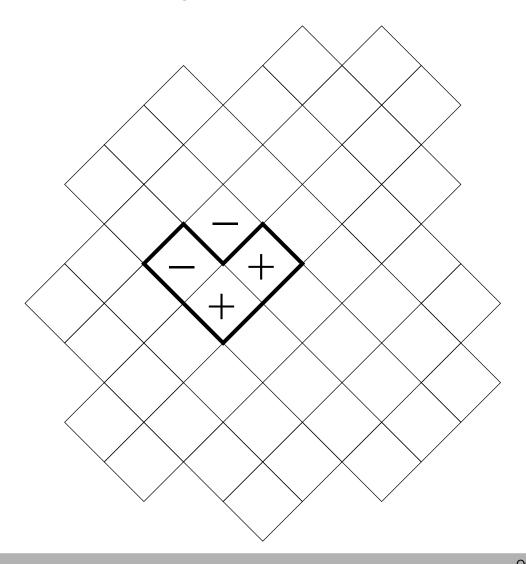
Stochastic dynamics: with probability *p*



Stochastic dynamics: with probability 1-p



Local primitive causality does *not* hold:



But local causality does hold:

