ON THE THREE TYPES OF BELL'S INEQUALITIES

Gábor Hofer-Szabó
Research Centre for the Humanities, Budapest

What are the assumptions of Bell's inequalities?

- Werner: locality + classicality
"Bell showed ... that classicality and locality together lead to false empirical conclusions"
- Maudlin: only locality
"the main order of business ought to be demonstrating exactly where the argument presumes classicality"

What are the assumptions of Bell's inequalities?

- Werner: locality + classicality
"Bell showed ... that classicality and locality together lead to false empirical conclusions"
- Maudlin: only locality
"the main order of business ought to be demonstrating exactly where the argument presumes classicality"
- Fine, Pitowsky: only classicality
"The violation itself has a-priori nothing to do with the principle of locality for it often occurs in cases where spatio-temporal aspects play no role whatever"

Bell's inequalities

$$
-1 \leqslant p_{13}+p_{14}+p_{24}-p_{23}-p_{1}-p_{4} \leqslant 0
$$

What are quantum probabilities?

(0) Ontological approach: classical unconditional probability

$$
p_{i}=p\left(A_{i}\right)
$$

(2) Operational approach: classical conditional probability

$$
p_{i}=p\left(A_{i} \mid a_{i}\right)
$$

- Quantum logical approach: quantum probability

$$
p_{i}=\operatorname{Tr}\left(\rho \hat{A}_{i}\right)
$$

Bell's inequalities

(1) Classical unconditional probability:

$$
\begin{array}{r}
-1 \leqslant p\left(A_{1} \cap B_{3}\right)+p\left(A_{1} \cap B_{4}\right)+p\left(A_{2} \cap B_{3}\right) \\
-p\left(A_{2} \cap B_{4}\right)-p\left(A_{1}\right)-p\left(B_{3}\right) \leqslant 0
\end{array}
$$

(2) Classical conditional probability:

$$
\begin{array}{r}
-1 \leqslant p\left(A_{1} \cap B_{3} \mid a_{1} \cap b_{3}\right)+p\left(A_{1} \cap B_{4} \mid a_{1} \cap b_{4}\right) \\
+p\left(A_{2} \cap B_{3} \mid a_{2} \cap b_{3}\right)-p\left(A_{2} \cap B_{4} \mid a_{2} \cap b_{4}\right) \\
-p\left(A_{1} \mid a_{1}\right)-p\left(B_{3} \mid b_{3}\right) \leqslant 0
\end{array}
$$

- Quantum probability:

$$
-1 \leqslant \operatorname{Tr}\left(\rho\left(\hat{A}_{1} \hat{B}_{3}+\hat{A}_{1} \hat{B}_{4}+\hat{A}_{2} \hat{B}_{3}-\hat{A}_{2} \hat{B}_{4}-\hat{A}_{1}-\hat{B}_{3}\right)\right) \leqslant 0
$$

Main claims

The violation of the three different types of Bell's inequalities:
(1) rules out classical events and also common causes for classical unconditional probabilities
(3) rules out common causes but not classical events for classical conditional probabilities

- does not rule out common causes for quantum probabilities

Main claims

The violation of the three different types of Bell's inequalities:
(1) rules out classical events and also common causes for classical unconditional probabilities (Fine, Pitowsky)
(2) rules out common causes but not classical events for classical conditional probabilities (Bell)
(3) does not rule out common causes for quantum probabilities (Hofer-Szabó and Vecsernyés)

Project

I. Classical events
II. Common causes
III. Relating Bell and Pitowsky
IV. Noncommuting common causes

I. Classical events

Pitowsky's question: When can a set of numbers be interpreted as unconditional probability of (classical) events and their conjunctions?

I. Classical events

When can the numbers p_{1}, p_{2} and p_{12} be the probability of events A_{1}, A_{2} and $A_{1} \cap A_{2}$?

I. Classical events

- Correlation vector: $\vec{p}=\left(p_{1}, p_{2}, p_{12}\right)$
- Vertices: $(0,0,0),(1,0,0),(0,1,0)$ and $(1,1,1)$
- Classical correlation polytope:

- Facet inequalities:

$$
\begin{aligned}
& 0 \leqslant p_{12} \leqslant p_{1} \leq 1 \\
& 0 \leqslant p_{12} \leqslant p_{2} \leq 1 \\
& p_{1}+p_{2}-p_{12} \leqslant 1
\end{aligned}
$$

I. Classical events

- Correlation vector: $\vec{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{13}, p_{14}, p_{23}, p_{24}\right)$
- Facet inequalities:

$$
\begin{aligned}
& 0 \leqslant p_{i j} \leqslant p_{i} \leqslant 1 \\
& 0 \leqslant p_{i j} \leqslant p_{j} \leqslant 1 \quad i=1,2 j=3,4 \\
& p_{i}+p_{j}-p_{i j} \leqslant 1 \\
&-1 \leqslant p_{13}+p_{14}+p_{24}-p_{23}-p_{1}-p_{4} \leqslant 0 \\
&-1 \leqslant p_{23}+p_{24}+p_{14}-p_{13}-p_{2}-p_{4} \leqslant 0 \\
&-1 \leqslant p_{14}+p_{13}+p_{23}-p_{24}-p_{1}-p_{3} \leqslant 0 \\
&-1 \leqslant p_{24}+p_{23}+p_{13}-p_{14}-p_{2}-p_{3} \leqslant 0
\end{aligned}
$$

I. Classical events

Pitowsky, 1989: The following statements are equivalent:
(1) \vec{p} satisfies Bell's inequalities
(2) \vec{p} is in the classical correlation polytope
(3) \vec{p} can represent the probability of classical events and their conjunctions

I. Classical events

When can the numbers p_{1}, p_{2} and p_{12} be
(1) conditional probabilities:

$$
p_{1}=p\left(A_{1} \mid a_{1}\right), \quad p_{2}=p\left(A_{2} \mid a_{2}\right), \quad p_{12}=p\left(A_{1} \cap A_{2} \mid a_{1} \cap a_{2}\right)
$$

(0) quantum probabilities:

$$
p_{1}=\operatorname{Tr}\left(\rho \hat{A}_{1}\right), \quad p_{2}=\operatorname{Tr}\left(\rho \hat{A}_{2}\right), \quad p_{12}=\operatorname{Tr}\left(\rho \hat{A}_{1} \hat{A}_{2}\right)
$$

I. Classical events

Polytopes:

Common Cause Principle: If there is a correlation between two events and there is no direct causal connection between the correlating events, then there always exists a common cause of the correlation

- Unconditional correlations:

$$
p\left(A_{i} \cap B_{j}\right) \neq p\left(A_{i}\right) p\left(B_{j}\right)
$$

- Joint common cause: partition $\left\{C_{k}\right\}$

$$
p\left(A_{i} \cap B_{j} \mid C_{k}\right)=p\left(A_{i} \mid C_{k}\right) p\left(B_{j} \mid C_{k}\right)
$$

II. Common causes

- Measurements: a_{i}, b_{j}
- Outcomes: A_{i}, B_{j}
- Conditional correlations:

$$
p\left(A_{i} \cap B_{j} \mid a_{i} \cap b_{j}\right) \neq p\left(A_{i} \mid a_{i}\right) p\left(B_{j} \mid b_{j}\right)
$$

Bell's question: Is there a common causal explanation of the conditional EPR correlations?

II. Common causes

Common causal explanation:

$$
\begin{aligned}
p\left(A_{i} \cap B_{j} \mid a_{i} \cap b_{j} \cap C_{k}\right) & =p\left(A_{i} \mid a_{i} \cap b_{j} \cap C_{k}\right) p\left(B_{j} \mid a_{i} \cap b_{j} \cap C_{k}\right) \\
p\left(A_{i} \mid a_{i} \cap b_{j} \cap C_{k}\right) & =p\left(A_{i} \mid a_{i} \cap C_{k}\right) \\
p\left(B_{j} \mid a_{i} \cap b_{j} \cap C_{k}\right) & =p\left(B_{j} \mid b_{j} \cap C_{k}\right) \\
p\left(a_{i} \cap b_{j} \cap C_{k}\right) & =p\left(a_{i} \cap b_{j}\right) p\left(C_{k}\right)
\end{aligned}
$$

II. Common causes

Common causal explanations imply Bell's conditional inequalities:

$$
\begin{array}{r}
-1 \leqslant p\left(A_{1} \cap B_{3} \mid a_{1} \cap b_{3}\right)+p\left(A_{1} \cap B_{4} \mid a_{1} \cap b_{4}\right) \\
+p\left(A_{2} \cap B_{3} \mid a_{2} \cap b_{3}\right)-p\left(A_{2} \cap B_{4} \mid a_{2} \cap b_{4}\right) \\
-p\left(A_{1} \mid a_{1}\right)-p\left(B_{3} \mid b_{3}\right) \leqslant 0
\end{array}
$$

III. Relating Bell and Pitowsky

Pitowsky: Classical events \Longrightarrow Bell's unconditional inequalities

Bell: Common causes \Longrightarrow Bell's conditional inequalities

III. Relating Bell and Pitowsky

Equivalent statements:
(1) \vec{p} satisfies Bell's inequalities
(2) \vec{p} is in the classical correlation polytope

- \vec{p} can represent the unconditional probability of classical events and their conjunctions
- \vec{p} can represent the probability of measwrement outcomes conditioned on measurement choices
- All conditional correlations in \vec{p} $p\left(A_{i} \cap B_{j} \mid a_{i} \cap b_{j}\right) \neq p\left(A_{i} \mid a_{i}\right) p\left(B_{j} \mid b_{j}\right)$ have a common causal explanation
- All unconditional correlations in \vec{p} $p\left(A_{i} \cap B_{j}\right) \neq p\left(A_{i}\right) p\left(B_{j}\right)$ have a joint common cause

III. Relating Bell and Pitowsky

Pitowsky's question: When can a set of numbers be interpreted as unconditional probability of (classical) events and their conjunctions?

Does \vec{p} satisfy Bell's inequality?

Bell's question: Is there a common causal explanation of the conditional EPR correlations?
IV. Noncommuting common causes

- Quantum probabilities:

$$
-1 \leqslant \operatorname{Tr}\left(\rho\left(\hat{A}_{1} \hat{B}_{3}+\hat{A}_{1} \hat{B}_{4}+\hat{A}_{2} \hat{B}_{3}-\hat{A}_{2} \hat{B}_{4}-\hat{A}_{1}-\hat{B}_{3}\right)\right) \leqslant 0
$$

- Quantum correlations:

$$
\operatorname{Tr}\left(\rho \hat{A}_{i} \hat{B}_{j}\right) \neq \operatorname{Tr}\left(\rho \hat{A}_{i}\right) \operatorname{Tr}\left(\rho \hat{B}_{j}\right)
$$

- Quantum common cause: orthogonal projections $\left\{C_{k}\right\}$

$$
\frac{\operatorname{Tr}\left(\rho \hat{C}_{k} \hat{A}_{i} \hat{B}_{j} \hat{C}_{k}\right)}{\operatorname{Tr}\left(\rho \hat{C}_{k}\right)}=\frac{\operatorname{Tr}\left(\rho \hat{C}_{k} \hat{A}_{i} \hat{C}_{k}\right)}{\operatorname{Tr}\left(\rho \hat{C}_{k}\right)} \frac{\operatorname{Tr}\left(\rho \hat{C}_{k} \hat{B}_{j} \hat{C}_{k}\right)}{\operatorname{Tr}\left(\rho \hat{C}_{k}\right)}
$$

The violation of the quantum Bell inequalities does not exclude noncommuting common causes!
IV. Noncommuting common causes
$\frac{1}{2}\left(\hat{A}_{1}\left(\hat{B}_{3}+\hat{B}_{4}\right)+\hat{A}_{2}\left(\hat{B}_{3}-\hat{B}_{4}\right)\right)$ is a witness operator testing the separability/entanglement of quantum states

Conclusions

(1) Classical unconditional probability:

$$
\begin{array}{r}
-1 \leqslant p\left(A_{1} \cap B_{3}\right)+p\left(A_{1} \cap B_{4}\right)+p\left(A_{2} \cap B_{3}\right) \\
-p\left(A_{2} \cap B_{4}\right)-p\left(A_{1}\right)-p\left(B_{3}\right) \leqslant 0
\end{array}
$$

(2) Classical conditional probability:

$$
\begin{array}{r}
-1 \leqslant p\left(A_{1} \cap B_{3} \mid a_{1} \cap b_{3}\right)+p\left(A_{1} \cap B_{4} \mid a_{1} \cap b_{4}\right) \\
+p\left(A_{2} \cap B_{3} \mid a_{2} \cap b_{3}\right)-p\left(A_{2} \cap B_{4} \mid a_{2} \cap b_{4}\right) \\
-p\left(A_{1} \mid a_{1}\right)-p\left(B_{3} \mid b_{3}\right) \leqslant 0
\end{array}
$$

- Quantum probability:

$$
-1 \leqslant \operatorname{Tr}\left(\rho\left(\hat{A}_{1} \hat{B}_{3}+\hat{A}_{1} \hat{B}_{4}+\hat{A}_{2} \hat{B}_{3}-\hat{A}_{2} \hat{B}_{4}-\hat{A}_{1}-\hat{B}_{3}\right)\right) \leqslant 0
$$

Conclusions

What are the assumptions of Bell's inequalities?

- Werner: locality + classicality "Bell showed ... that classicality and locality together lead to false empirical conclusions"
- Maudlin: only locality
"the main order of business ought to be demonstrating exactly where the argument presumes classicality"
- Fine, Pitowsky: only classicality "The violation itself has a-priori nothing to do with the principle of locality for it often occurs in cases where spatio-temporal aspects play no role whatever"

References

- Gömöri, M. and C. Hoefer (2023). "Classicality and Bell's theorem" (forthcoming).
- Hofer-Szabó G., P. Vecsernyés (2013). "Bell inequality and common causal explanation in algebraic quantum field theory," Stud. Hist. Phil. Mod. Phys., 44, 404-416.
- Hofer-Szabó G. (2020). "On the three types of Bell's inequality," in O. Shenker, M. Hemmo (eds.) Quantum, Probability, Logic: The Work and Infuence of Itamar Pitowsky, Berlin: Springer, 353-374.
- Maudlin, T. (2014a). "What Bell did," J. Phys. A: Math. Theor., 47, 424010.
- Maudlin, T. (2014b). "Reply to Comment on 'What Bell did'," J. Phys. A: Math. Theor., 47, 424012.
- Pitowsky, I. (1989): Quantum Probability - Quantum Logic. Springer.
- Werner, R. (2014a). "Comment on 'What Bell did'," J. Phys. A: Math. Theor., 47, 424011.
- Werner, R. (2014b). "What Maudlin replied to," URL=https://arxiv.org/pdf/1411.2120.pdf

IV. Separable states

- \mathcal{A}, \mathcal{B} : two mutually commuting C^{*} subalgebras of the C^{*} algebras \mathcal{C}
- Bell operator: an element \hat{R} of the set

$$
\left\{\frac{1}{2}\left[\hat{A}_{1}\left(\hat{B}_{3}+\hat{B}_{4}\right)+\hat{A}_{2}\left(\hat{B}_{3}-\hat{B}_{4}\right)\right]\right\}
$$

where $\hat{A}_{i}=\hat{A}_{i}^{*} \in \mathcal{A}, \hat{B}_{i}=\hat{B}_{i}^{*} \in \mathcal{A}$ and $\mathbf{- 1} \leqslant \hat{A}_{i}, \hat{B}_{i} \leqslant \mathbf{1}$

- For separable $\rho:|\operatorname{Tr}(\rho \hat{R})| \leqslant 1$
- \hat{R} is a witness operator testing the separability of states

Conclusion

To what question is Bell's inequality an answer?
I. Question: When can numbers represent probabilities?
II. Question: When do correlations have a common causal explanation?
III. Question: ???

