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I. Probability
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Probability

A brief history of probability:
1654: Pascal–Fermat correspondence (two de Méré paradoxes)

1665: Leibniz: De Conditionibus (conditional probability)

1670: Pascal: Pensées (the ’wager’: maximal expected utility)

1713: Bernoulli: Ars Conjectandi (weak law of large numbers,
non-additive probability)

1763: Bayes: Doctrine of Chance (bayesianism)

1812: Laplace: Théorie analytique des probabilités (central limit theorem)

1900: Hilbert’s 6th problem

1933: Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung
(measure theoretical approach)
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Probability

Measure theoretical probability:

(Ω,Σ): measurable space

µ : Σ → [0,∞]: σ-additive measure on (Ω,Σ):
µ(∅) = 0

µ(∪iai) =
∑

i µ(ai), if ai ∩ aj = ∅ for all i 6= j

(Ω,Σ, µ): measure space

Probability measure : p(Ω) := µ(Ω) = 1

(Ω,Σ, p): probability measure space
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Probability

Standard interpretations of probability:

1. Classical interpretation (Laplace)

2. Logical interpretation (Keynes, Carnap)

3. Subjective interpretation (Ramsey, de Finetti)

4. Frequency interpretation (Reichenbach, von Mises)

5. Propensity interpretation (Popper)

– p. 6



Probability

What does it mean?
“The probability of getting a 6 with a fair die is 1/6.”

1. Classical: “The ratio of the number of favorable and
equally possible outcomes is 1/6.”

2. Logical: “The proposition ’The dice is rolled’ confirmes
the proposition ’It comes up 6’ in a degree of 1/6.”

3. Subjective: “The degree of rational belief in the event
that 6 will come up is 1/6.”

4. Frequency: “The relative frequency of 6 in a long run of
throws is 1/6.”

5. Propensity : “The die has a causal disposition of coming
up 6 in a degree of 1/6.”
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Probability

Salmon’s criteria of interpretation:

Admissibility: satisfy the probability axioms

Ascertainability: be empirically accessible

Applicability: serve as a ’guide to life’ (Butler)
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Probability

A better approach:

Admissibility −→ model

Ascertainability −→ interpretation

Appli cabil ity
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II. Relative frequency interpretation

“Probability is nothing else than ratio” (Venn, 1866)
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Relative frequency interpretation

Hans Reichenbach
The Theory of Probability, 1949

Richard von Mises
Wahrscheinlichkeit, Statistik und
Wahrheit, 1928

Mathematical Theory of

Probability and Statistics, 1964
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Relative frequency interpretation

Von Mises’ birthday paradox:

Within a group of 366 people, the probability of there
being at least two people having their birthday the same
day is 1. For how many people is this probability 0.99?
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Relative frequency interpretation

Von Mises’ birthday paradox:

Within a group of 366 people, the probability of there
being at least two people having their birthday the same
day is 1. For how many people is this probability 0.99?

Solve

1−
365× 364× · · · × (365− n+ 1)

365n
= 0, 99

Solution: n ≈ 55
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Relative frequency interpretation

The subject of probability theory:

“is long sequences of experiments or observations repeated very

often and under a set of invariable conditions. We observe, for

example, the outcome of the repeated tossing of a coin or of a pair

of dice; we record the sex of newborn children in a population; we

determine the successive coordinates of the points at which bullets

strike a target in a series of shots aimed at a bull’s-eye; or, to give a

more general example, we note the varying outcomes which result

from measuring “the same quantity” when “the same measuring

procedure” is repeated many times. In every case we are

concerned with a sequence of observations; we have determined

the possible outcomes and recorded the actual outcome each

time.” (von Mises, 1964 ,2)
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III. Relative frequency model
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Relative frequency model

Von Mises’ two principles:

1. Stability of relative frequency

2. Principle of impossibility of a successful gambling
system (Prinzip vom ausgeschlossenen Spielsystem)
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Relative frequency model

1. Stability of relative frequency:

“It is essential for the theory of probability that experience has

shown that in the game of dice, as in all other mass phenomena

which we have mentioned, the relative frequencies of certain

attributes become more and more stable as the number of

observations in increased.” (von Mises, 1928, 12)
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Relative frequency model

1. Stability of relative frequency:

x : N → Σ: infinite sequence

Asymptotic relative frequency of a ∈ Σ in the
sequence x:

rx(a) = lim
n→∞

1

n

n
∑

k=1

1a(xk)

(if it exists) where 1a(xk) is the characteristic function :

1a(xk) =

{

1, ha xk ⊆ a

0, ha xk * a
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Relative frequency model

1. Stability of relative frequency:

(Ω,Σ, p): probability measure space

(Ω,Σ, p) has a relative frequency model : there exists a
sequence x : N → Σ such that for all a ∈ Σ:

rx(a) = p(a)
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Relative frequency model

Borel’s theorem:

x ∈ [0, 1]

Binary expansion: x = 0.x1x2 . . . where xi ∈ {0, 1}

Relative frequency: rx({1}) = limn→∞

∑n

i=1 xi

n

Borel’s theorem (1909): λ
({

x | rx({1}) =
1
2

})

= 1
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Relative frequency model

2. Principle of impossibility of a successful gambling
system (Prinzip vom ausgeschlossenen Spielsystem:)

“For example, if we sit down at the roulette table in Monte Carlo

and bet on red only if the ordinal number of the game is, say, the

square of a prime number, the chance of winning (that is, the

chance of the label red) is the same as in the complete sequence

of all games. And if we bet on zero only if numbers different from

zero have shown up fifteen times in succession, the chance of the

label zero will remain unchanged in this subsequence . . .

The banker at the roulette acts on this assumption of randomness

and he is successful. The gambler who thinks he can devise a

system to improve his chances meets with disappointment.” (von

Mises, 1964, 108)
– p. 21



Relative frequency model

Collectives:

Σ: algebra of properties

x : N → Σ: infinite sequence

x is a collective if
there exists rx(a) for all a ∈ Σ

rx(a) is invariant under place selection that is for all
a ∈ Σ and for all admissible place selection φ:

rx(a) = rφ(x)(a)
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Relative frequency model

Place selection:

A typical reaction: Tornier (1933):
“Ich glaube nicht, daß Versuche, die von Misessche Theorie rein
mathematisch zu fassen, zum Erfolg führen können, und glaube
auch nicht daß solche Versuche dieser Theorie zum Nutzen
gereichen. Es liegt hier offentsichtlich der sehr interessante Fall
vor, daß ein praktisch durchaus sinnvoller Begriff – Auswahl ohne
Berücksichtigung der Merkmalunterschiede – prinzipiell jede rein
mathematische, auch axiomatische Festlegung ausschließt. Wohl
aber wäre es wünschenswert, das sich diesem Sachverhalt, der
vielleicht von grundlegender Bedeutung ist, das Interesse weiter
mathematischen Kreise zuwendet.”
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Relative frequency model

Place selection:

First idea: place selection = Bernoulli sequence
Copeland (1932), Reichenbach (1932), Popper
(1935)

x : N → {0, 1}: 0-1 sequence

String: ’01001’

Place selection, φ01001: if ’01001’ comes up in the
sequence at xk, xk+1, . . . xk+l, then select element xk+l+1

Bernoulli sequence: if rx(1) = rφstring(x)(1) for all strings
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Relative frequency model

Place selection:

Special case of Bernoulli sequence: normal number
Champernowne (1933)

Let x = 0100011011000 . . . : binary numbers in ascending
lexicographic order

x is a Bernoulli sequence but it is constructable!

Bernoulli sequence are not collectives in the sense of
von Mises!
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Relative frequency model

Place selection:

Second idea: place selection = selection of an element
xk depends only on the elements x<k

x : N → {0, 1}: 0-1 sequence

f1, f2(x1), f3(x1, x2), . . . fk+1(x1, x2 . . . xk) . . . :
a sequence of N → {0, 1} infinite 0-1 functions
representing whether depending on x1, x2 . . . xk the
element xk+1 gets selected or not
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Relative frequency model

Place selection:

Second idea, equivalent formulation:

x : N → {0, 1}: 0-1 sequence

f : N → R: arbitrary function

Place selection, φ(x): pick the kth element of x if

ck = 1, where ck = f(bk), bk+1 = 2bk + xk, b1 = 1
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Relative frequency model

Place selection:

Second idea, equivalent formulation:

x : N → {0, 1}: 0-1 sequence

f : N → R: arbitrary function

Place selection, φ(x): pick the kth element of x if

ck = 1, where ck = f(bk), bk+1 = 2bk + xk, b1 = 1

Kamke (1932): this definition is wrong!
Let f(bk) = xl(k), where l(k) is the least positive integer
such that 2l(k) > bk

In this case φ(x) = 1111111 . . . , so rx(1) 6= rφ(x)(1)

x is not a collective – p. 28



Relative frequency model

Place selection:

Church (1940): let f be recursive function

Wald (1937): since there are countable recursive
functions, therefore there are uncountable collectives

Collectives cannot be constructed!
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IV. Relative frequency interpretation
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Relative frequency interpretation

Von Mises: probability theory is an empirical science

“We take it as understood that probability theory, like theoretical

mechanics or geometry, is a scientific theory of a certain domain of

observed phenomena. If we try to describe the known modes of

scientific research we may say: all exact science starts with

observations, which, at the outset, are formulated in ordinary

language; these inexact formulations are made more precise and

are finally replaced by axiomatic assumptions, which, at the same

time, define the basic concepts. Tautological (= mathematical)

transformations are then used in order to derive from these

assumptions conclusions, which, after retranslation into common

language, may be tested by observations, according to operational

prescriptions.
– p. 31



Relative frequency interpretation

Von Mises: probability theory is an empirical science

Thus, there is in any sufficiently developed mathematical science a

“middle part,” a tautological or mathematical part, consisting of

mathematical deductions. Nowadays, in the study of probability

there is frequently a tendency to deal with this mathematical part in

a careful and mathematically rigorous way, while little interest is

given to the relation to the subject matter, to probability as a

science.
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Relative frequency interpretation

Von Mises: probability theory is an empirical science

This is reflected in the fact that today the “measure-theoretical

approach” is more generally favored than the “frequency approach”

presented in this book . . . Now, such a description of the

mathematical tools used in probability calculus seems to us only

part of the story. Mass distributions, density distributions, and

electric charge are likewise additive set functions. If there is nothing

specific in probability, why do we define “independence” for

probability distributions and not for mass distributions? Why do we

consider random variables, convolutions, chains, and other specific

concepts and problems of probability calculus?” (von Mises, 1964,

43-44)
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Relative frequency interpretation

Cramér’s criticism:

“The probability definition thus proposed would involve a mixture of

empirical and theoretical elements, which is usually avoided in

modern axiomatic theories. It would, e.g. be comparable to defining

a geometrical point as the limit of a chalk spot of infinitely

decreasing dimensions, which is usually not done in modern

axiomatic geometry.” (1946, 150)
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Relative frequency interpretation

von Mises’ response:

“The ’mixture of empirical and theoretical elements’ is, in our

opinion, unavoidable in a mathematical science. When in the

theory of elasticity we introduce the concepts of strain and stress,

we cannot content ourselves by stating that these are symmetric

tensors of second order. We have to bring in the basic assumptions

of continuum mechanics, Hooke’s law, etc., each of them a mixture

of empirical and theoretical elements. Elasticity theory “is” not

tensor analysis . . . the transition from observation to theoretical

concepts cannot be completely mathematicized. It is not a logical

conclusion but rather a choice, which, one believes, will stand up in

the face of new observations.” (1964, 45)
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Relative frequency interpretation

The end of the frequency interpretation:

Ville (1939): there exist gambling strategies (called
Martingales) which cannot be represented as place
selections

von Mises: “I accept the theorem, but I do not see the
contradiction.”

1937 Geneva Conference on the Theory of Probability:
Fréchet’s criticism of the von Mises approach

Renaissance of the frequency interpretation:
Kolmogorov complexity (1965), randomicity (Martin-Löf,
1966)
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V. (Alleged) problems
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Problems

Relative frequency interpretation:
Singular probability
The reference class problem
Irrelevancy of the finite relative frequency

Relative frequency model:
σ-additivity and related issues
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Problems

Singular probability:

“’The probability of winning a battle’, for instance, has no place in

our theory of probability, because we cannot think of a collective to

which it belongs. The theory of probability cannot be applied to this

problem any more than the physical concept of work can be applied

to the calculation of the ’work’ done by an actor in reciting his part

in a play.” (von Mises, 1928, 15)
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Problems

Singular probability:

“I regard the statement about the probability of the single case, not

as having a meaning of its own, but as an elliptic mode of speech.

In order to acquire meaning, the statement must be translated into

a statement about a frequency in a sequence of repeated

occurrences. The statement concerning the probability of the single

case thus is given a fictious meaning, constructed by a transfer of

meaning from the general to the particular case.” (Reichenbach,

1949, 376-77)
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Problems

The reference class problem:

“Let us assume, for example, that nine out of ten Englishmen are

injured by residence in Madeira, but that nine out of ten

consumptive persons are benefited by such a residence. These

statistics, though fanciful, are conceivable and perfectly compatible.

John Smith is a consumptive Englishman; are we to recommend a

visit to Madeira in his case or not?” (Venn, 1866, 222-223)
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Problems

The reference class problem:

“If we are asked to find the probability holding for an individual

future event, we must first incorporate the case in a suitable

reference class. An individual thing or event may be incorporated in

many reference classes, from which different probabilities will

result. This ambiguity has been called the problem of the reference

class.” (Reichenbach, 1949, 374)
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Problems

Irrelevancy:

The finite relative frequencies are irrelevant to the
asymptotic relative frequencies.

These latter might not even exist.
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Problems

von Mises’ response:

“The probability concept used in probability theory has exactly the

same structure as have the fundamental concepts in any field in

which mathematical analysis is applied to describe and represent

reality. Consider for example a concept such as velocity in

mechanics. While velocity can be measured only as the quotient of

a displacement s by a time t, where both s and t are finite,

non-vanishing quantities, velocity in mechanics is defined as the

limit of that ratio as t → 0, or as the differential quotient ds/dt. It

makes no sense to ask whether that differential quotient exists ’in

reality.’ The assumption of its mathematical existence is one of the

fundamentals of the theory of motion; its justification must be found

in the fact that it enables us to describe and predict essential

features of observable motions.” (von Mises, 1964, 1-2) – p. 44



Problems

Four claims:

(i) Frequencies do not form a σ-additive measure on every
sequence.

(ii) Sequences with asymptotic relative frequency do not
form a σ-algebra.

(iii) Sequences with asymptotic relative frequency do not
form even an algebra.

(iv) Random sequences do not form an algebra.
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Problems

Claim (i): Frequencies do not form a σ-additive measure on
every sequence.

Let xk ≡ k be the sequence of natural numbers. Here for
all k the asymptotic relative frequency is 0, whereas for
the countable union N = {1} ∪ {2} ∪ . . .

lim
n→∞

1

n

n
∑

k=1

1N(xk) = 1,

so frequencies do not form a σ-additive measure.
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Problems

Why de Finetti did not like σ-additivity?
Dilemma:

Either Σ = P(Ω) but then no σ-additivity (−→ mainstream)

or σ-additivity but then Σ ⊂ P(Ω) (−→ de Finetti)
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Problems

Non-Lebesgue measurable sets of [0, 1]:

Equivalence relation on [0, 1]: x ∼ y iff x− y ∈ Q.

Equivalence classes: [x] := {x+ q ∈ [0, 1] | q ∈ Q}

E: one element from each equivalence class (Axiom of choice!)

Eq := E + q (modulo 1, for all q ∈ Q)

The sets Eq are countable, disjoint and their union is [0, 1]

Suppose that p(Eq) = p. Due to the translation invariance of the

Lebesgue measure p(Eq′) = p for all q′ ∈ Q

If p = 0, then
∑

q
p(Eq) = 0, if p 6= 0, then

∑

q
p(Eq) = ∞

But due to σ-additivity
∑

q
p(Eq) = p(∪qEq) = p([0, 1]) = 1

Hence E is not Lebesgue measurable
– p. 48



Problems

Claim (ii): Sequences with asymptotic relative frequency do
not form a σ-algebra.

Let x : N → Σ be a sequence such that rx(a) does not
exist.

For any n ∈ N let x(n) be the following sequence:

x
(n)
n′ =

{

xn, if n′ = n,

∅, if n′ 6= n.

rx(n)(a) = 0 for any x(n)

But x = ∪nx
(n)!
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Problems

Claim (iii): Sequences with asymptotic relative frequency
do not form even an algebra.

Let x = 110011110000111111111111000000000000 . . .

By the construction rx(1) does not exists. Now, let

y = 101010101010101010101010101010101010 . . .

z = 100110100101101010101010010101010101 . . .

y′ = 011001011010010101010101101010101010 . . .

z′ = 010101010101010101010101010101010101 . . .

Obviously, ry(1) = rz(1) = ry′(1) = rz′(1) =
1

2

But x = (y ∩ z) ∪ (y′ ∩ z′)!
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Problems

Claim (iv): Random sequences do not form an algebra.

Consider any 0-1 sequence and change the 0s and the
1s.

Independently of how randomicity is defined, the
pointwise union of the two sequences will not be
random.

– p. 51



Conclusions

There are problems with the relative frequency
interpretation of probability . . .
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Conclusions

There are problems with the relative frequency
interpretation of probability . . . but other interpretations
fair even worse!
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The two de Méré paradoxes

Division paradox:

Two players are playing a fair game and they have
agreed that whoever wins 6 rounds first gets the whole
prize. The game stops when the first player has won 5,
the second 3 rounds. How could the prize be devided?

– p. 55



The two de Méré paradoxes

Division paradox:

Two players are playing a fair game and they have
agreed that whoever wins 6 rounds first gets the whole
prize. The game stops when the first player has won 5,
the second 3 rounds. How could the prize be devided?

Luca Pacioli, 1494: no solution

Tartaglia, 1556: 2 : 1

Pascal: 7 : 1

– p. 56



The two de Méré paradoxes

Two dice paradox:

How can it be that
the probability of getting at least one 6 in 4 rolls of a
single die is slightly less than 1/2,
whereas the probability of getting at least one double
6 in 24 rolls of two dice is slightly more than 1/2,

since the chance of getting one 6 is six times as much
as the probability of getting a double 6, and 24 is exactly
six time as great as 4?

– p. 57



The two de Méré paradoxes

Two dice paradox:

How can it be that
the probability of getting at least one 6 in 4 rolls of a
single die is slightly less than 1/2,
whereas the probability of getting at least one double
6 in 24 rolls of two dice is slightly more than 1/2,

since the chance of getting one 6 is six times as much
as the probability of getting a double 6, and 24 is exactly
six time as great as 4?

Solution :
First case: p = 1−

(

5
6

)4
≈ 0, 518

Second case: p = 1−
(

35
36

)24
≈ 0, 492
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The two de Méré paradoxes

Two dice paradox:

Intuition :
’Critical value’: the number n such that (1− p)n

exceeds 1
2

First case: p = 1−
(

5

6

)4
≈ 0, 518 → critical value: 4

Second case: p = 1−
(

35

36

)24
≈ 0, 492 → critical value: 25

Intuition: proportionality rule of ’critical values’
De Moivre, 1718: the true law for the critical values is:
(1− p)n = 1

2

The ’proportionality rule of critical values’ holds
approximately only if p is small:
n = − ln 2

ln(1−p)
= − ln 2

p+ p2/2+ ...

– p. 59



Relative frequency interpretation

Actual frequency interpretation:
Probability = relative frequency in an actual sequence
of trials
Venn, 1866: “Probability is nothing else than ratio”

Hypothetical frequency interpretation:
Probability = relative frequency if the die would be
tossed infinite many times
Reichenbach, von Mises

– p. 60



Relative frequency model

Three operations on collectives:

Mixing: for adding probabilities

Partition: for conditional probabilites

Combination: for multiplying probabilities

– p. 61
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