Quantum Correlations and Separate Common Causes

Gábor Szabó

Probabilistic causation

Correlation:

Probabilistic causation

Direct causal relation:

Probabilistic causation

Common cause:

Reichenbach's Common Cause Principle (RCCP): If there is a correlation between two events and a direct causal (or logical) connection between the correlated events can be excluded, then there exists a common cause of the correlation.

Correlation:

 $p(A_1 \& B_1) \neq p(A_1) p(B_1)$

Correlations:

 $p(A_1 \& B_1) \neq p(A_1) p(B_1)$ $p(A_1 \& B_2) \neq p(A_1) p(B_2)$

Correlations:

 $p(A_1 \& B_1) \neq p(A_1) p(B_1)$ $p(A_1 \& B_2) \neq p(A_1) p(B_2)$ $p(A_2 \& B_1) \neq p(A_2) p(B_1)$

Correlations:

 $p(A_{1} \& B_{1}) \neq p(A_{1}) p(B_{1})$ $p(A_{1} \& B_{2}) \neq p(A_{1}) p(B_{2})$ $p(A_{2} \& B_{1}) \neq p(A_{2}) p(B_{1})$ $p(A_{2} \& B_{2}) \neq p(A_{2}) p(B_{2})$

Causal explanation of correlations

Direct causal relation?

Excluded by the theory of relativity!

Causal explanation of correlations

Joint common cause

Separate common cause

Motivation by Markov condition

 Markov condition => screening-off, locality and no-conspiracy

Bell inequality and joint common cause

Bell inequality and joint common cause

 The Bell inequality is violated for the specific measurement directions, therefore EPR correlations cannot have a joint common cause.

Motivation by Markov condition

 Markov condition => screening-off, locality and no-conspiracy

Bell inequality and separate common cause

Bell inequality and separate common cause

Still, EPR correlations *cannot* even have a separate common cause.

Correlation:

No direct causal relation:

No common cause:

Open question

Joint common cause:

Separate common cause:

Does there exist a connection between the following two facts?

- 1. From a set of assumptions one can derive a *Bell inequality*.
- 2. This set of assumptions result from the *Markov condition* applied to a causal graph.

The answer is not known.

References

- Grasshoff, G., S. Portmann, A. Wüthrich (2005). "Minimal Assumption Derivation of a Bell-type Inequality," *The British Journal for the Philosophy of Science*, **56**, 663-680.
- Hofer-Szabó G. (2008). "Separate- versus Common-Common-Cause-Type Derivations of the Bell Inequalities," Synthese, 163/2, 199-215.
- Hofer-Szabó G. (2011). "Bell(δ) Inequalities Derived from Separate Common Causal Explanation of Almost Perfect EPR Anticorrelations," *Foundations of Physics*, **41**, 1398-1413.
- Hofer-Szabó G. (2012). "Separate common causal explanation and the Bell inequalities," International Journal of Theoretical Physics, 51, 110-123.
- Portmann S., A. Wüthrich (2007). "Minimal Assumption Derivation of a Weak Clauser–Horne Inequality," *Studies in History and Philosophy of Modern Physics*, **38/4**, 844-862.
- Reichenbach, H. (1956). The Direction of Time, University of California Press, Berkeley.
- Szabó L. E. (2000). "On an Attempt to Resolve the EPR–Bell Paradox via Reichenbachian Concept of Common Cause," *International Journal of Theoretical Physics*, **39**, 911.