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”[Thermodynamics] . . . is the only theory of universal content concerning which I am convinced that,
within the framework of the applicability of its basic concepts, it will never be overthrown.”

(Einstein)

”Every mathematician knows it is impossible to understand an elementary course in thermodynamics.”

(Arnold)

Course description

For the speaker:

• Read the chosen chapter one week before class and come up with three questions which help
others in reading the text (For example: Which are the competing historical approaches towards
the nature of heat and what are the arguments for each? ). Make a pdf file with your name in the text
and send it to me (gsz@szig.hu) one week before class. I will post them on the web page of the
seminar (http://hps.elte.hu/ gszabo/PhysicsandChance.html)

• Disseminate a (maximum two page) handout before your talk.

• Talk no less than 20 and no more than 30 minutes.

• You need not cover all of the material. Pick some points which you find interesting.

• Chair the discussion in class.

For everyone, for every week:

• Pick one question and write a 500 word answer to it. (If you find all questions unilluminating,
write simply a 500 word summary of the chapter.) Send it to me (gsz@szig.hu) not later than
one day before class (that is until Sunday 9.30).

• How to read philosophical texts? The point of intractability.

”What should you seek when you start reading in a new topic in philosophy of science? The emphasis should
be on identifying the central theses and arguments. But how deeply should you read? I have found one rule of
thumb very helpful. In any field, there are easy and obvious results. They are typically picked up and published
early. The sign of maturity of a field is that none of them are left. Rather one develops a sense of a deep
intractability that blocks further progress. You should seek to read to this point of intractability and try to
find how that intractability arises. It is generally manifested in a ”damned if you do and damned if you don’t”
dynamic. There will be a proliferation of different viewpoints, each designed to circumvent the difficulty, but
with none commanding universal assent.

The classic philosophical problem, Hume’s problem of induction, illustrates this. How can inductive inference
be justified? Any purported justification must call upon other means of inductive justification, so that they are
circular or trigger an infinite regress. Or, if you accept that no justification is admissible, then it would seem
we have no reason to believe inductive inference. So can you justify induction? You are damned if you try; and
damned if you don’t.

The common experience in entering a new field in philosophy of science is that you see lots of easy results.

Exactly because they are easy, chances are that they are widely known. When you find that progress has been

stalled by apparently intractable problems, rejoice! You have come to the point where novel contributions are

possible.” (John Norton)
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1 Classical thermodynamics

• Birth: industrial revolution (late 18th, early 19th century) (cf. BBC, In our Time: Heat)

• Methodological starting point: fundamental laws should be independent of any hypothesis
about the microscopic constitution of matter (Reason: positivist-empirical philosophy, multi-
tude of microphysical hypotheses)

• Heroes: Carnot, Clausius, Kelvin, Planck, Gibbs, Carathéodory, Lieb and Yngvason

1.1 Basic concepts

• Thermodynamic state: a small number of parameters describing the system’s macroscopic state

– Intensive and extensive parameters

• Equations of state: f(p, V, T, n) = 0

– Ideal gas law: pV = nRT = NkT

• Equilibrium: thermodynamic coordinates are constant over time

• Quasi-static process: the system is in equilibrium throughout the process (’Moving a cup of
tea filled to the brim without spilling’)

• Reversible process: the process 〈si, Zi〉
P−→ 〈sf , Zf 〉 is irreversible if there exists another process

P ′ such that 〈sf , Zf 〉
P′−→ 〈si, Zi〉 complete recovering the initial state of the system and the

environment (frictionless piston)

– Reversible =⇒ quasi-static; but quasi-static 6=⇒ reversible (piston subject to friction)

– A reversible process gives the maximum limit of work that a system can produce

– A reversible process need not be adiabatic

– Reversible 6= time reversal invariant

1.2 Laws

• ’Minus First’ Law (Uffink): there is a spontaneous tendency to thermodynamic equilibrium

• Zeroth Law: ’is in thermal equilibrium with’ is a transitive relation (necessary for defining
temperature)

– Temperature: choose a system with a convenient property x (length) and take (empirical)
temperature θ to be a linear function of x: θ(x) = ax+ b

– Ideal gas temperature: T is defined through pV = nRT and Ts − Ti = 100

• First Law: ∆U = Q+W

• ∆U is a function of state but Q and W are not. (The division of ∆U into Q and W is path
dependent)

• Second Law:

– Clausius’ Principle: It is impossible to perform a cyclic process which has no other result
than that heat is absorbed from a reservoir with a low temperature and emitted into a
reservoir with a higher temperature.

– Kelvin’s Principle: It is impossible to perform a cyclic process with no other result than
that heat is absorbed from a reservoir and work is performed.

(If temperature is positive,) they are equivalent (Prove after the Carnot cycle!)
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1.3 Carnot cycle and entropy

• Carnot cycle

– Efficiency of heat engine: η = W
Q2

= 1− Q1

Q2
6 1

– Coefficiency of refrigerator: κ = Q1

W = Q1

Q2−Q1
= 1

η − 1 > 0

• Carnot Principle: Let the temperature of two heat reservoirs be T1 and T2 (with T1 < T2).
Then:

(i) all heat engines operating in a reversible cycle have the same efficiency depending only on
the temperatures T1 and T2;

(ii) all other heat engines have an efficiency which is less than or equal to that obtained by
reversible cycles.

• The Carnot Principle is the consequence of the Second Law

• Thermodynamic temperature: (the efficiency of the reversible Carnot cycle depends only on
the temperature) Ts−Ti

Ts
= 1 + Q1

Q2
= 0.268 and Ts − Ti = 100 (identical with the ideal gas

temperature)

• Entropy

– Efficiency for ideal gas: 1− Q1

Q2
= 1− T1

T2

– Therefore, from the (reversible) Carnot principle, for any system: −Q1

T1
+ Q2

T2
= 0

– Generally:
∑
i
±Qi
Ti

−→
∮
dQ
T

– Introduction of a function of state: entropy: S(A) :=
∫ A

0
dQ
T

– For reversible process: S(B)− S(A) =
∫ B
A

dQ
T

– For irreversible process (from the Second Law): S(B)− S(A) >
∫ B
A

dQ
T

• Second Law: S(B)− S(A) >
∫ B
A

dQ
T

– The Second Law is exceptionless

– Entropy is a property of an individual system

– Entropy does not fluctuate

• For adiabatic (∆Q = 0) processes: ∆S > 0

– Reversible adiabatic expansion: ∆Q = 0 therefore ∆S = 0

– Heat conduction (irreversible process): ∆S = ∆S1 +∆S2 = ∆Q
T1
− ∆Q

T2
= ∆Q( 1

T1
− 1
T2

) > 0

– Free expansion (irreversible process): ∆S = nR ln V2

V1
> 0

2 Kinetic theory

2.1 Basic concepts

• The aim of the kinetic theory: to give an account for the thermodynamical behaviour of
macroscopic systems in terms of the dynamical laws governing their microscopic constituents
and some probabilistic assumptions

• Two subprojects:
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– Equilibrium theory: What the dynamical laws have to be to ensure that the macroscopic
parameters remain constant? How can the values of macroscopic parameters like pressure
and temperature be calculated on the basis of the microphysical description?

– Non-equilibrium theory: How does a system approach equilibrium when left to itself in
a non-equilibrium state and why? What is microphysical explanation of the fact that
processes in the world are irreversible?

• Two ways of doing this:

– Maxwell, Boltzmann: single system (µ-space) approach

– Gibbs: ensemble (Γ-space) approach

• µ-space

– µ-space: µ 3 (r,v) = (q1, q2, q3; v1, v2, v3), 6 dimensional

– Velocity distribution, density function: f(r,v, t)

– f(r,v, t) is continous and normalized

– d3r d3v: volume element – ’large and small’

• Γ-space

– Phase space: Γ 3 x := (q1, q2 . . . qn; p1, p2 . . . pn), 6N dimensional

– Dynamics: q̇i = ∂H
∂pi

, ṗi = −∂H∂qi =⇒ φt(x): Hamiltonian flow

– Constraints, energy hypersurface: ΓE := {x ∈ Γ |H(x) = E}
– Lebesgue (volume) measure on Γ: µ

– Lebesgue measurable subsets of Γ: A ∈ F
– Liouville’s theorem: The Lebesgue measure is invariant under the Hamiltonian flow: for

any t and A ∈ F : µ(φt(A)) = µ(A)

– Dynamical system: (Γ,F , µ, φt)
– Induced measure on ΓE : µE(AE) :=

∫
AE

dσE
||∇H|| where AE ∈ FE1. Also µE is invariant:

µE(φt(AE)) = µE(AE) for any t and AE ∈ FE

3 Maxwell

3.1 Maxwell, 1860

• µ-space approach

• Until Maxwell: uniform velocity distribution

• Maxwell’s question: What form f(r,v, t) = f(r,v) takes in equilibrium?

• Three ”precarious assumptions”:

1. Homogenity of space: f(r,v) = f(v)

2. Isotropy of space: f(v) = g(v) = g
(√

v2
x + v2

y + v2
z

)
3. Independence of directions: g(v) = h(vx)h(vy)h(vz) (∗)

• Solution of (∗): f(v) = ( m
2πkT )

3
2 e
−mv2
2kT

1||∇H|| :=
[∑n

i=1

(
∂H
∂pi

)2
+
(
∂H
∂qi

)2] 1
2
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• Remarks:

– Maxwell adopts the frequency interpretion of probability f(v)d3v, but Assumption 3 sits
better with the classical interpretion

– Collisions play no role in the derivation

3.2 Maxwell, 1867

• New model: point particles with equal masses interacting by means of a repulsive central force
proportional to ∆r5

• Number of collisions: N(v1,v2) = N2f(v1)f(v2)|v2 − v1|dv1dv2dV dt

• Stosszahlanzatz (aka. molecular chaos) is used: the number of collisions during a time dt in
spatial volume dV throwing molecules with initial velocities v1 and v2 within d3v1 and d3v2

into v′1 and v′2 within d3v′1 and d3v′2 is proportional to the product of the number of molecules
with velocity v1 within d3v1 and those with velocity v2 within d3v2 and that spatial volume
element

• For stationary distribution: N(v1,v2) = N(v′1,v
′
2) =⇒ f(v1)f(v2) = f(v′1)f(v′2), for which

(∗) is a solution

• Remarks:

– Collisions do play a role

– The Maxwell distribution is not the unique stationary distribution

– Boltzmann’s counterexample: molecules lined up so that they only collide centrally and
move perpendicularly between parallel walls. Then f(v) = 1

2 (δ(v− v0) + δ(v + v0))

– Maxwell was convinced that the derivation of the Second Law from mechanical principles
was impossible:

”It is rare sport to see those learned Germans contending the priority of the discovery that the

2nd law of [thermodynamics] is the ‘Hamiltonsche Prinzip’, [. . . ] The Hamiltonsche Prinzip,

the while, soars along in a region unvexed by statistical considerations, while the German Icari

flap their waxen wings in nephelococcygia amid those cloudy forms which the ignorance and

finitude of human science have invested with the incommunable attributes of the invisible Queen

of Heaven”

”The Second Law has the same degree of truth as the statement that if you thow a tumblerful

of water into the sea, you cannot get the same tumblerful of water out again.”

– −→ Maxwell’s demon (7.10)

4 Boltzmann

4.1 Boltzmann, 1872

• µ-space approach

• Boltzmann’s program: whatever the initial velocity distribution of gas molecules, it approaches
(due to collision) to the Maxwell-Boltzmann distribution (non-equilibrium theory)

• Boltzmann equation: ∂f
∂t + v(∇vf) + F

m∇f =
(
∂f
∂t

)
coll

• The collision term (using the Stosszahlanzatz ) is:
(
∂f
∂t

)
coll

= N
∫
dΩ
∫
d3v2 σ(Ω)|v2−v1|(f ′1f ′2−

f1f2)
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– σ(Ω): differential cross section (for hard spheres: a2

4 )

– f1f2: the number of pairs of molecules with velocity v1 and v2, respectively colliding in
the volume d3v at time t (outgoing molecules) (Stosszahlanzatz !)

– f ′1f
′
2: the number of pairs of molecules with velocity v′1 and v′2, respectively colliding in

the volume d3v at time t (incoming molecules)

• Equilibrium distribution: stationary (∂f∂t = 0) solution of the Boltzmann equation (the t→∞
limit of the time dependent solutions)

• H-theorem: Let H[f ] =
∫
f lnf d3v. Then

(i) for any solution of the Boltzmann equation H[f ]
dt 6 0, and

(ii) dH[f ]
dt = 0 iff f is the Maxwell-Boltzmann distribution

• Sketch of the proof:

(i) In dH[f ]
dt the term (f ′1f

′
2 − f1f2)(lnf1f2 − lnf ′1f

′
2) is never positive

(ii) dH[f ]
dt is zero iff f1f2 = f ′1f

′
2 which is equivalent to lnf1 + lnf2 = lnf ′1 + lnf ′2. This is a

conservation law, but the only conserved quantities are energy (proportional to v2) and
momentum (proportional to v). Hence lnf = A(v−v0)2 + lnC. Fixing the constants one
gets the Maxwell-Boltzmann distribution

• Fine-grained Boltzmann entropy: SB,f [f ] := −H[f ]

4.2 Objections

• Instrumentalist objections (Mach, Duhem)

• Why to reduce thermodynamics on classical mechanics?

• Umkehreinwand (Reversibility objection – Loschmidt, 1876)

– Γ-space approach

– Premise 1. Time reversal invariance of classical mechanics: if x(t) is a solution, then
T (x(t)) also is a solution

– Premise 2. H is independent of the direction of velocity of the molecules: H[f ] = H[Tf ]

– Conclusion. H is increasing

– There is no a priori reason to believe that the time-reversed states do not occur in nature

– The reversibility objection points to crucial role that the assumption of molecular chaos
plays in the derivation of the H-theorem: for the theorem to hold the assumption of
molecular chaos has to hold at each moment of the dynamical evolution. But whether this
is the case depends on the dynamics

– Boltzmann: ”Go ahead and reverse the momenta!”

• Poincaré’s recurrence theorem (1889): In a Hamiltonian system enclosed in a finite volume
with a finite energy almost all states will eventually return to as close to the the initial state
as one specifies

– Poincaré’s theorem: Let (Γ,F , µ, φt) a dynamical system with µ(Γ) < ∞. Let A ∈ F be
any measurable subset of Γ, and define the set B for a given time τ as: B := {x ∈ Γ |x ∈
A & ∀t > τ : φtx /∈ A}. Then µ(B) = 0

– ’Proof’: (i) Choose a large enough t such that µ(B ∩ Bt) = 0. It follows that for any n
and n + k µ(Bnt ∩ B(n+k)t) = 0. From Liouville’s theorem µ(Bnt) = µ(B(n+k)t) = 0 for
any n and k. But then µ(B) = 0
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• Wiederkehreinwand (Recurrence objection – Zermelo, 1896)

– After a Poincaré cycle the system gets back ’very’ close to the initial state

– If H is continous (!) then it cannot decrease monotonically

– Poincaré:

”According to this theory, to see heat pass from a cold body into a warm one, it will not be

necessary to have the acute vision, the intelligence and the dexterity of Maxwell’s demon; it

will suffice to have a little patience”

– Boltzmann: ”little patience” = 101019

seconds for a cubic centimetre of air (microstates
are defined here within 10 Å spatial position for each molecule and within 1-3% speed
value)

4.3 Boltzmann, 1877b

• A combinatorial (non-dynamical) approach

– coarse-graining the µ-space

– ωi: the ith cell in the µ-space

– δω = δ3x δ3v: the volume of the cells (6 dimensional cubelets) – ’large and small’

– Three key notions:

∗ Arrangement: the specification of which of the n molecules is in which cell

∗ Macrostate or state distribution Z{ni} = (n1, n2 . . . nk): the specification of how many
molecules are in which cell

∗ Microstate: x ∈ Γ

– Macrostates supervene on the microstates:

∗ Microstate → arrangement → state distibution

∗ State distibution 6→ arrangement 6→ microstate: Z{ni} remains the same if (i) we per-
mute molecules in different cells (different arrangement), (ii) we move the molecules
within the cells (same arrangement)

– Macroregion: ΓZ{ni} := {x ∈ ΓE |Z = Z{ni}}
– Macroregions form a partition of Γ: {ΓZ{ni}}

– Since
∣∣∣ΓZ{ni} ∣∣∣ = N !

n1!n2!...nk! (δω)N , the regions ΓZ{ni} vary enormously in size: a lot

molecules in the same cell→
∣∣∣ΓZ{ni} ∣∣∣ is small; evenly distributed arrangements→

∣∣∣ΓZ{ni} ∣∣∣
is big

– Equilibrium: the distribution corresponding to the largest region (largest ’number’ of
different microstate)

– With the constraints on Z:
∑l
i=1 ni = N,

∑l
i=1 niεi = E, using the method of Lagrange

multipliers and the Stirling formula, Boltzmann shows that ni = αe−βεi (which is the
discrete Maxwell-Boltzmann distribution)

• Coarse-grained Boltzmann entropy: SB,c[Z{ni}] := k ln
∣∣∣ΓZ{ni} ∣∣∣

– With the Stirling formula: SB,c[Z{ni}] =
∑
i ni lnni+ c, or using the probability pi := ni

N :
SB,c[Z{ni}] =

∑
i pi ln pi + c′

– Entopy: (i) a measure for the number of arrangements compatible with a given macrostate,
(ii) a measure of how much we can infer about the arrangement of the system on the basis
of its macrostate

– Taking the logarithm gives an extensive quantity
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– The largest entropy, by definition, is assigned to the equilibrium distribution

• Remarks:

– No mention of dynamics, collisions etc.

– It works only for systems with no interaction (The energy of the molecules depended only
on its coarse-grained microstate and not on the state of other particles)

– Is coarse-graining subjective, objective?

– Taking energy cells the combinatorical argument fails to reproduce the Maxwell-Boltzmann
distribution

– Cells cannot be eliminated: in the δω → 0 limit, the formulae diverge

∗ Occupation number and distribution: ni(t) =
∫
ωi
f(r,v, t)d3r d3v = f(ri,vi, t)δω (by

the mean value theorem)

∗ SB,c[Z{ni}] = −
∑
i δωf(ri,vi, t) ln f(ri,vi, t)− n ln(δω) + c ≈ SB,f [f ]− n ln(δω) + c

– The definition of equilibrium is changed

– Evolution towards equilibrium: Does the overwhelmingly large phase space volume of Γeq
compared to the set of non-equilibrium points provide a sufficient argument?

4.4 Other contributions of Boltzmann

• Ergodicity

– Boltzmann, 1868a: first application of an ensemble instead of an individual system.

Time average and phase space average: When are they equal?

– Boltzmann, 1871: harmonic oscillator with potential U(x, y) = ax2 + by2 where
√

a
b is

irrational −→ ergodic hypothesis

• Universe, entropy, arrow of time

– Boltzmann, 1868a: Our observable world is only a small portion of a vast Universe in
thermal equilibrium which came about by random fluctuation.

– Weak antropic argument: non-equilibrium is essential for the existense of a sentient being

– Arrow of time := the gradient of entropy −→ The arrow of time (7.8)

5 Gibbs’ statistical mechanics

• Gibbs, 1902: ensemble instead of individual system

”We may imagine a great number of systems of the same nature, but differing in the configurations

and velocities which they have at a given instant, and differing not merely infinitesimally, but it

may be so as to embrace every conceivable combination of configuration and velocities. And here we

may set the problem, not to follow a particular system through its succession of configurations, but

to determine how the whole number of systems will be distributed among the various conceivable

configurations and velocities at any required time, when the distribution has been given for some

one time”

”What we know about a body can generally be described most accurately and most simply by saying

that it is one taken at random from a great number (ensemble) of bodies which are completely

described”

• Schrödinger: Ensembles are ”mental copies of the one system under consideration”, they do
not interact with each other
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• Probability density function: ρt(x) (x ∈ Γ)

– Liouville’s theorem: dρ
dt = ∂ρ

∂t + {ρ,H} = 0: ρ ’flows’ as an incompressible fluid2

– ρ is defined in the Γ-space and normed to 1, f is defined in the µ-space and normed to N

– Dynamics: ρt(x) = ρ0(φ−tx) ⇐⇒ ∂ρt(x)
∂t = {H, ρ}

• Stationary density function: ∀t, x : ρ0(φ−tx) = ρ0(x) ⇐⇒ ∂ρt(x)
∂t = 0

• They characterize equilibrium since they yield constant averages: ∂〈f(x)〉
∂t =

∫
Γ
f(x)∂ρt(x)

∂t dx = 0
(if f does not depend explicitely on time)

• Special cases:

ρE(x) =
1

ω(E)
δ(H(x)− E) (microcanonical: E,N is fixed)

ρT (x) =
1

Z(T )
e
−H(x)
T (canonical: N is fixed, E can vary)

ρT,α(x,N) =
1

N !Z(T, α)
e
−H(x)
T+αN (grand-canonical: E,N can vary)

• Postulate of equal a priori probability: all microstates compatible with the apropriate con-
straints have equal probability

• Fine-grained Gibbs entropy: SG,f [ρ] := −k
∫

Γ
ρ(x) ln ρ(x)dx

– SG,f [ρ] 6= SB,f [f ]: the Gibbs entropy is defined on Γ, the Boltzmann entropy is defined
on the µ-space

– For the above constraints the appropriate distribution has the maximal fine-grained Gibbs
entropy

• How SG,f [ρ] changes with the dynamics φt?

– Due to Liouville’s theorem the fine-grained Gibbs entropy remains constant:
∂SG,f [ρ]

∂t = 0
(See (Zeh, 2007, 52))

– But! Gibbs’ ink drop analogy: mixing two incomplessible fluids: first take finite regions,
then stir the fluids, then tend to zero with the volume of the regions ( 6= first tend to zero
with the volume of the region, then stir the fluids!)

• Coarse-graining: CG : ρ(x) 7→ ρ̂(x) =
∑
i ρ̂(i)1ωi(x) where ρ̂(i) := 1

δω

∫
ωi
ρ(x)dx

• Coarse-grained Gibbs entropy: SG,c[ρ] := −k
∫

Γ
ρ̂(x) lnρ̂(x) dx

– SG,c[ρ] is not constrained by Liouville’s theorem!

• Does the coarse-grained Gibbs entropy evolve towards the equilibrium state?

– It is true that: SG,c[ρ] > SG,f [ρ] (The equality holds only if the fine-grained distribution
is uniform over the cells)

– But! SG,c[ρ] is non-decreasing only if the system is mixing : a dynamical system (Γ,F , µ, φt)
is called mixing iff for all A,B ∈ F : limt→∞ µ(φtA ∩B) = µ(A)µ(B)

• Remarks:

– For equilibrium systems SG,f [ρ] = S (thermodynamic entropy)

– (Unlike S) SG,f [ρ] and SG,c[ρ] are properties of the ensemble

2The Poisson bracket {ρ,H} is defined as {ρ,H} :=
∑2rN
i=1

(
∂ρ
∂qi

H
∂pi
− ∂ρ
∂pi

H
∂qi

)
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– SG,f [ρ] does not but SG,c[ρ] does vary with time

– Where does coarse-graining come from? Limited capacity of the observer?

– Does equilibrium make sense to creatures with unlimited capacity? −→ spin-echo exper-
iment (Hahn, 1950): ”A closed system in thermodynamical equilibrium may preserve an
arrow of time in the form of hidden correlations.” (Zeh, 2007, 57)

• −→ The many face of entropy (7.1)

6 The Ehrenfests, 1912

• A critical review of Boltzmann’s and Gibbs’ approach

6.1 Ergodic problem

• Three problems in Boltzmann’s approach

1. ”Probability” is sometimes used as the relative volume of the region and sometimes the
relative time spent in the region by the trajectory of the system

2. Why microcanonical distibution?

3. Why microstates evolve into Γeq?

• Time average: f(x) := limT→∞
1
T

∫ T
0
f(φtx)dt – empirically meaningful but hard to calculate

• Ensemble average: 〈f〉t :=
∫

ΓE
f(x)dµE(x) =

∫
ΓE
f(x)ρt(x)dx – manageable but what does it

mean?

• Ergodic problem: When are the two averages equal?

– Observe that f(x) depends on x and 〈f〉t depends on t

– For stationary measure 〈f〉t does not depend on t. Take for example 〈f〉mc
• Boltzmann’s ergodic hypothesis: the trajectory of the system traverses all points on the energy

hypersurface ΓE , that is for any x, y ∈ ΓE there is a τ such that y = φτx

– The ergodic hypothesis solves the ergodic problem:

f(y) = lim
T→∞

1

T

∫ T

0

f(φt+τx)dt = lim
T→∞

1

T

(∫ T

0

f(φtx)dt−
∫ τ

0

f(φtx)dt

)
=

= lim
T→∞

1

T

∫ T

0

f(φtx)dt = f(x)

– Therefore f is constant over ΓE , and hence f = 〈f〉mc
• −→ Ergodicity (7.2)

6.2 Concentration curve

• The Boltzmann equation and the H-theorem is valid not for a single system but for a set of
systems: they are probabilistic claims

• The vast majority of systems will remain close to the solution of the Boltzmann equation and
hence the H-function (concentration curve, H-bundle)

• Individual systems may and will deviate from the concentration curve in accord with Poincaré’s
recurrence theorem −→ The Kac ring model (7.3)
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7 Topics for further discussion

7.1 The many face of entropy

• Fine-grained Boltzmann entropy: SB,f [f ] := −
∫
f(v) lnf(v) d3v

• Coarse-grained Boltzmann entropy: SB,c[Z{ni}] := k ln
∣∣∣ΓZ{ni} ∣∣∣

• Fine-grained Gibbs entropy: SG,f [ρ] := −k
∫

Γ
ρ(x) ln ρ(x)dx

• Coarse-grained Gibbs entropy: SG,c[ρ] := −k
∫

Γ
ρ̂(x) lnρ̂(x) dx

• Shannon entropy: SSh := Exp (− ln(p(X)) where p(X) is the probability mass function of the
discrete random variable X

• Kolmogorov Sinai entropy of the dynamical system (Γ,F , µ, φ): Let Q be a partition of Γ; define
the entropy of Q as H(Q) := −

∑
i µ(Qi) lnµ(Qi) and consider the refinement of an iterated

φ-pullback of Q: QN :=
∨N
n=0 φ

−nQ. The Kolmogorov Sinai entropy is then the maximal
entropy of these refinements: SKS := supQ

(
limN→∞

1
N H

(
QN
))

where the supremum is taken
over all finite measurable partitions

• von Neumann entropy: SvN := −Tr(ρ ln ρ) where ρ is a density operator

7.2 Ergodicity

• Birkhoff theorem. Let (X,F , µ, φt) be a dynamical system and let f be an integrable phase
function. Then the time average f(x) (i) exists almost everywhere, (ii) is invariant: f(x0) =
f(φtx0) for all t, and integrable:

∫
X
f(x0)dµ =

∫
X
fdµ.

• Ergodicity. A dynamical system (X,F , µ, φt) is ergodic iff for any measurable set A ∈ F such
that µ(A) 6= 0 and for all x ∈ X, except for a set of measure 0, it holds that {φt(x)} ∩ A 6= ∅
for some t.

• Ergodic theorem. Let (X,F , µ, φt) be a dynamical system and let f be an integrable phase
function. Then f = 〈f〉 iff the system is ergodic.

• Corrolaries:

– Let f be χA. Then µ(A) = χA = 〈χA〉 = limT→∞
1
T

∫ T
0
χA(φtx)dt: the measure of a

region is the fraction of time the system spends in the region: a good justification of the
volume measure

– Hence, almost all trajectories come arbitrary close to any points on the energy hypersur-
face infinitely many times

– Let (X,F , µ, φt) be ergodic. Let µ′ be a φt-invariant measure that is absolutely continous
with respect to µ (that is for any measurable A ⊆ X if µ(A) = 0, then µ′(A) = 0). Then
µ′ = µ. (Loosely: if the system is ergodic, there is only one time invariant measure)

• Decomposability. A dynamical system (X,F , µ, φt) is decomposable iff X can be partitioned
into two (or more) invariant regions of non-zero measure, that is if there are A,B ⊆ X such
that A ∩B = ∅, A ∪B = X, µ(A) 6= 0 6= µ(B) and φt(A) ⊆ A and φt(B) ⊆ B for all t

– Indecomposability ⇐⇒ There is no (neglected) global constant of motion that differs in
its value on sets of trajectories of non-zero measure

– Ergodicity ⇐⇒ Indecomposability

• Ergodic hierarchy: a dynamical system (Γ,F , µ, φt) is

– weak mixing if for all A,B ∈ F : limt→∞
1
T

∫ T
0
|µ(φtA ∩B)− µ(A)µ(B)|dt = 0,

11



– mixing if for all A,B ∈ F : limt→∞ µ(φtA ∩B) = µ(A)µ(B),

– a K system if there is a subalgebra F0 ⊂ F such that

1. φnF0 ⊂ φmF0 for m < n, where φn is a discrete dynamics;

2. the smallest σ-algebra containing ∪∞n=1φ−nF0 is F ; and

3. ∩∞n=1φnF0 = N , where N is the σ-algebra containing only sets of µ-measure zero or
one.

– a Bernoulli system if there is a finite partition P = {A1, A2 . . . An} of Γ such that the
doubly infinite coarse-grained histories are isomorphic to a Bernoulli scheme for P with
the distribution pi = µ(Ai) (i = 1 . . . n).

• Relations: Bernoulli system =⇒ K system =⇒ Mixing =⇒ Weak mixing, Indecomposability

– Mixing =⇒ Indecomposability: Let A = B invariant subsets of Γ. Then limt→∞ µ(φtA ∩
A) = µ(A) = µ(A)µ(A) =⇒ µ(A) ∈ {0, 1}.

– Indecomposability 6=⇒ Mixing: 1-dimensional harmonic oscillator is decomposable but
not mixing.

7.3 The Kac ring model, 1956

• N : the number of balls on the ring, revolving counterclockwise changing color at leaving active
sites

• W (t), B(t): the number of white, black balls at time t

• δ(t) := W (t)−B(t)
N : normalized difference (greyness)

• A: the number of the ’active’ sites

• WA(t), BA(t): the number of white, black balls in active sites at time t

• Dynamics:

W (t+ 1) = W (t)−WA(t) +BA(t)

B(t+ 1) = B(t)−BA(t) +WA(t)

• With the Stosszahlanzatz : WA(t)
W (t) = µ := A

N one gets for the dynamics: δ(t) = (1 − 2µ)tδ(0)

(∗∗)

• The macrostate δ = 2W−N
N fixes the number of white and black balls and is compatible with(

N
W

)
microstates, so we can define the entropy as: S(δ) := k ln

(
N
W

)
• Using Stirling’s formula: S(δ) ≈ − 1+δ

2 ln 1+δ
2 −

1−δ
2 ln 1−δ

2 and is monotonically increasing with
t (since δ is monotonically decreasing)

• Reversibility objection: in the reverse process (balls revolving clockwise and changing color at
entering an active site) δ is monotonically decreasing again (check!) but (for example starting
with all white balls) it cannot

• Recurrence objection: after 2N time steps the original configuration has been restored. There-
fore δ cannot be monotonically decreasing

• The crucial step in the derivation was the Stosszahlanzatz ! But this does not hold for the Kac
ring: after the second round trip we know how many white ball will be on active sites

• Resolution: Introduce i.i.d. random variables εi for every site with µ probability being active
(representing an ensemble of rings). This yields equation (∗∗) above for the ensemble. In the
above objections 〈εi εi+N 〉 = 1 so they were not i.i.d.
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7.4 Malament, Zabell, 1980

• Gibbsian strategy: physical quantities are time averages of phase functions

• Problems with time average:

– Why do we measure time averages?

– Moreover, why do we measure infinite time averages?

– The change of macroscopic parameters is inconsistent with the claim that what we observe
are infinite time averages

• Malament, Zabell: Retaining ergodicity but no appeal to time averages

• Assumption 1. The phase function f associated with the macroscopic parameters is such that

µmc

({
x ∈ ΓE : |f(x)−

∫
ΓE

f dµmc| > ε

})
≈ 0

• Assumption 2. p(A) = µmc(A)

• Conclusion: It is very likely that the system is in a microstate for which the value of f is close
to the phase average

• Vranas, 1998: ε-ergodicity

7.5 Khinchin, 1949

• Retaining time averages but no appeal to ergodicity

• Assumption 1. Thermodynamic limit: we only have to consider systems with large number of
degrees of freedom, and

• Assumption 2. a special class of phase functions: the sum functions: f(x) =
∑n

1=1 fi(xi)

• Khinchin theorem. For all sum functions f there are positive constants k1 and k2 such that

µmc

({
x ∈ ΓE :

∣∣∣∣∣f(x)− 〈f〉
〈f〉

∣∣∣∣∣ > k1n
− 1

4

})
6 k2n

− 1
4

• Remarks:

– Weaker assumptions than ergodicity

– Measurement outcomes are still associated with infinite time averages

– There are thermodynamic quantities which cannot be characterized by sum functions

– ”Methodological paradox”: for the proof the Hamiltonian has to be a sum function but
then there is no interaction leading to the equilibrium −→ Khinchin: short range interac-
tions

7.6 Landford, 1976

• Aim: to derive Boltzmann’s H-theorem from the Hamiltonian dynamics in the sense that the
following diagram is commutative:

x0
Hamilton−−−−−−−→ xt

↓ ↓

fx0
Boltzmann−−−−−−−−→ fx0

t
?
= fxt

13



where x ∈ Γ and fx is a function on the µ-space.

• Problem: fx has to be differentiable, but fx
N

:= 1
N

∑N
i δ

3(r− r′i) δ
3(v − v′i) is not.

• Solution: Take the Boltzmann-Grad limit: N → ∞ such that the mean free path Nd2

V is
constant.

• Landford’s theorem (Uffink, 2007, 1031)

• Remarks:

– Because of the Boltzmann-Grad limit used in the proof, the theorem holds only for ex-
tremely dilute gases.

– ”the theorem to be stated says only that the Boltzmann equation holds for times no
larger then one-fifth of a mean free time and hence does not suffice to justify its physically
interesting applications” (Lanford)

– There is no need to rerandomize: one need to assume the Stosszahlanzatz only once!

7.7 Markov process

• Two motivations to use stochastic dynamics: coarse-graining and interventionism

• A simple stochastic model: ’dog flea model’ (Ehrenfests, 1907)

• Markov process: p(xn, tn|xn−1, tt−1;xn−2, tt−2; . . . x2, t2;x1, t1) = p(xn, tn|xn−1tt−1)

– No memory

– Time-symmetric: equivalent definition:

p(xn, tn; . . . x1, t1|xi, ti) = p(xn, tn; . . . xi+1, ti+1|xi, ti) p(xi−1, ti−1; . . . x1, t1|xi, ti)

– Markov chain: homogeneous Markov process: pt2t1yx = pt2+t,t1+t
yx

– Stochastic matrices: T such that Tij > 0 and
∑
i Tij = 1

– Chapman–Kolmogorov equation: p31
zx =

∑
y p

32
zy p

21
yx or equivalently T 31 = T 32 ◦ T 21

– Master equation: ∂pt(x)
∂t =

∑
y(Wxyp

t(y) −Wyxp
t(x)) like the Boltzmann equation, is a

first-ordered differential equation, but, unlike the Boltzmann equation, is linear.

• Entropy increase

– The relative entropyH(p, q) := −
∑
x px ln px

qx
is monotonically non-decreasing: H(Tp, Tq) >

H(p, q): p and q will resemble more and more.

– If peq is stationary: Tpeq = peq, then Tp will more and more resemble to peq: H(p, peq) 6
H(Tp, Tpeq) = H(Tp, peq).

– If peq is even uniform: peqx = 1
n , then also the absolute entropy H(p) := −

∑
x px ln px

will increase, since H(p, peq) = H(p)− lnn.

• Is there always a stationary distribution?

– In the finite case, due to the Peron-Frobenius theorem, there is: every stochastic matrix
has an eigenvector with exclusively non-negative components and eigenvalue 1.

– In the infinite case, there is not always. Counter-example: Wiener process. But for
continous variables with a range that has a finite measure, there is.

– T is irreducible, iff it is not completely or incompletely reducible, or equivalently, if for
any x, y there is a t such that ptxy > 0. If T is irreducible, there exists a unique stationary
distribution. Furthermore, the following theorem holds:
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∗ Ergodic theorem for Markov processes: If the transition probability Tt is irreducible,
the time average of pt converges to the unique stationary solution: limτ→∞

1
τ

∫ τ
0
Ttpxdt =

peqx .

– If the system is not asymptotically periodic, then the monotonic behaviour of H(pt) implies
that limt→∞ pt = peq.

• Motivating Markov property by coarse-graining

– Transition probabilities:

T tji := p(xt ∈ ωj |x0 ∈ ωi) = p(φtx0 ∈ ωj |x0 ∈ ωi) =

p(x0 ∈ φ−tωj |x0 ∈ ωi) =

∫
(φ−tωj)∩ωi ρ(x)dx∫

ωi
ρ(x)dx

– Coarse-grained dynamics: φ̂t(ρ(x)) :=
∑
ij T

t
ji

∫
ωj
ρ(x)dx∫
ωj
dx

1ωj (x)

– Chapman–Kolmogorov equation: φ̂t′+t = φ̂t′ ◦ φ̂t
• Motivating Markov property by interventionism

– System + environment: ρ(x, y)

– Hamiltonian: H = Hs +He + λHi

– Coarse-grained dynamics: φ̂t : ρs0(x)ρe0(y)
H−→ ρt(x, y)

CG−−→ (
∫
ρt(x, y)dy) ρe0(y) by tracing

out for the system

– Chapman–Kolmogorov equation: φ̂t′+t = φ̂t′ ◦ φ̂t

7.8 The arrow of time

• Boltzmann’s approach: (i) fluctuation out of equilibrium, (ii) weak antropic argument, (iii)
equating arrow of time with entropy gradient

• Modern approach: (i) low entropy initial state

• In what sense the increase of entropy is accounting for the time arrow?

– up-down, left-right, earlier-later

– Reichenbach: footprint in the sand, Earman: cat food cans in the supermarket

– Lewis: counterfactual theory of causation

– substance identification

• Zeh, 2007

7.9 Gibbs paradox

7.10 Maxwell’s demon

7.11 Phase transition

7.12 Stosszahlanzatz and Projection Postulate

7.13 The problems of rerandomization

7.14 Quantum statistical physics
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