Bell's local causality in local classical and quantum theory

Gábor Hofer-Szabó

Research Centre for the Humanities, Budapest

Péter Vecsernyés

Wigner Research Centre for Physics, Budapest

Project

- I. What is a local physical theory?
- II. Bell's local causality in a local physical theory
- III. Common Cause Principle
- IV. Bell inequalities
 - V. Causal Markov Condition

- \mathcal{M} : globally hyperbolic spacetime with symmetries \mathcal{P}
- \mathcal{K} : covering collection of bounded, globally hyperbolic regions of \mathcal{M}
- (\mathcal{K},\subseteq) : directed poset
- $\mathcal{P}_{\mathcal{K}}$: **subgroup** of \mathcal{P} leaving \mathcal{K} invariant

Discretized two dimensional Minkowski spacetime:

- **Definition.** A $\mathcal{P}_{\mathcal{K}}$ -covariant **local physical theory (LPT)** is a net $\mathcal{K} \ni V \mapsto \mathcal{N}(V)$ associating von Neumann algebras to spacetime regions which satisfies
 - 1. isotony,
 - 2. microcausality,
 - 3. covariance.

• Isotony: if $V_1 \subset V_2$, then $\mathcal{N}(V_1)$ is a unital subalgebra of $\mathcal{N}(V_2)$

• Microcausality (Einstein causality): $[\mathcal{N}(V_A), \mathcal{N}(V_B)] = 0$

Covariance: covariant group homomorphism on the net

Remarks:

- Quasilocal algebra A: the inductive limit C^* -algebra of the net
- A is commutative: local classical theory (LCT)
- A is noncommutative: local quantum theory (LQT)

• Causal complement: V'

• Domain of dependence: V''

Examples:

- 1. Deterministic LCT
- 2. Stochastic LCT
- 3. Deterministic LQT
- 4. Stochastic LQT (not known)

1. Deterministic LCT

Local algebras:

Local algebras:

2. Stochastic LCT

Stochastic dynamics: with probability p

• Stochastic dynamics: with probability 1-p

Stochastic dynamics:

Stochastic dynamics: with probability p

• Stochastic dynamics: with probability 1-p

3. **Deterministic LQT** by imposing anticommutation relation between neighbours

• "A theory will be said to be locally causal if the probabilities attached to values of local beables in a space-time region V_A are unaltered by specification of values of local beables in a space-like separated region V_B , when what happens in the backward light cone of V_A is already sufficiently specified, for example by a full specification of local beables in a space-time region V_C ." (Bell, 1990/2004, p. 239-240)

Remarks:

- 1. "The *beables* of the theory are those entities in it which are, at least tentatively, to be taken seriously, as corresponding to something real."
- 2. "there *are* things which **do go faster than light**. British sovereignty is the classical example. When the Queen dies in London (long may it be delayed) the Prince of Wales, lecturing on modern architecture in Australia, becomes instantaneously King."
- 3. "Local beables are those which are definitely associated with particular space-time regions. The electric and magnetic fields of classical electromagnetism, $\mathbf{E}(t,x)$ and $\mathbf{B}(t,x)$ are again examples."

Remarks:

4. "It is important that region V_C completely shields off from V_A the overlap of the backward light cones of V_A and V_B ."

Remarks:

5. "And it is important that events in V_C be **specified completely**. Otherwise the traces in region V_B of causes of events in V_A could well supplement whatever else was being used for calculating probabilities about V_A ."

Translation:

- "local beable" → element of a local von Neumann algebra
- "complete specification" an atomic element of a local von Neumann algebra
- "completely shielder-off region" -->

"completely shielder-off region":

- (i) $V_C \subset J_-(V_A)$
- (ii) $V_A \subset V_C''$
- (iii) $V_C \subset V_B'$

- Definition. A LPT is called (Bell) locally causal, if
 - for any pair of projections $A \in \mathcal{N}(V_A)$ and $B \in \mathcal{N}(V_B)$ supported in spacelike separated regions $V_A, V_B \in \mathcal{K}$, and
 - for every locally normal and faithful *state* ϕ establishing a correlation between A and B, $\phi(AB) \neq \phi(A)\phi(B)$, and
 - for any spacetime region V_C satisfying Requirements (i)-(iii), and
 - for any *atomic event* C_k in $\mathcal{N}(V_C)$:

$$\frac{\phi(C_k ABC_k)}{\phi(C_k)} = \frac{\phi(C_k AC_k)}{\phi(C_k)} \frac{\phi(C_k BC_k)}{\phi(C_k)}$$

Question:

When is a LPT locally causal?

• Local primitive causality: $\mathcal{N}(V) = \mathcal{N}(V'')$ for any $V \in \mathcal{K}$

Local primitive causality: holds in deterministic LCTs

Local primitive causality: does not hold in stochastic

LCTs

Proposition:

Any atomic LPT satisfying local primitive causality is locally causal.

But...

how can a LQT be locally causal if local causality implies the Bell inequalities which are violated for certain quantum correlations?

• Reichenbach's Common Cause Principle (CCP): If there is a correlation between two events and there is no direct causal (or logical) connection between them, then there always exists a common cause of the correlation.

- Correlation: $\phi(AB) \neq \phi(A)\phi(B)$
- Common cause: partition $\{C_k\}_{k\in K}$ of the unit

$$\frac{\phi(C_k ABC_k)}{\phi(C_k)} = \frac{\phi(C_k AC_k)}{\phi(C_k)} \frac{\phi(C_k BC_k)}{\phi(C_k)}$$

- Correlation: $\phi(AB) \neq \phi(A)\phi(B)$
- Common cause: partition $\{C_k\}_{k\in K}$ of the unit

$$\frac{\phi(C_k ABC_k)}{\phi(C_k)} = \frac{\phi(C_k AC_k)}{\phi(C_k)} \frac{\phi(C_k BC_k)}{\phi(C_k)}$$

- Commuting / Noncommuting common cause: $\{C_k\}_{k\in K}$ is commuting / not commuting with A and B
- Nontrivial common cause: $C_k \not\leq A, A^{\perp}, B \text{ or } B^{\perp} \text{ for some } k \in K$

Common Cause Principle:

Weak Common Cause Principle:

Local causality:

Similarities:

- 1. Both local causality and the CCPs are properties of a LPT represented by a net $\{\mathcal{N}(V), V \in \mathcal{K}\}$.
- 2. The core mathematical requirement of both principles is the **screening-off condition**:

$$\frac{\phi(C_k ABC_k)}{\phi(C_k)} = \frac{\phi(C_k AC_k)}{\phi(C_k)} \frac{\phi(C_k BC_k)}{\phi(C_k)}$$

3. The **Bell inequalities** can be derived from both principles. (But see below.)

Differences:

- 1. For local causality the screening-off condition is required for **every** atomic event. For the CCPs it is required only for events of **one** partition.
- For local causality the screening-off condition is required only for atomic events. For the CCPs one is looking for nontrivial common causes.
- 3. For local causality screener-offs are localized 'asymmetrically' in the past of V_A (or V_B). For the CCP they are localized 'symmetrically' in the joint / common past of V_A and V_B .

A nice parallelism:

Local causality \implies Bell inequalities Common Cause Principle \implies Bell inequalities

- Set of correlations: $\phi(A_mB_n) \neq \phi(A_m)\phi(B_n)$
- Joint common cause: partition $\{C_k\}_{k\in K}$ of the unit

$$\frac{\phi(C_k A_m B_n C_k)}{\phi(C_k)} = \frac{\phi(C_k A_m C_k)}{\phi(C_k)} \frac{\phi(C_k B_n C_k)}{\phi(C_k)}$$

• Reduced state: $\phi_{\{C_k\}}(X) := \sum_k \phi(C_k X C_k)$

Proposition:

• Joint common cause \Longrightarrow Bell inequalities for the reduced state $\phi_{\{C_k\}}$

$$-1 \leqslant \phi_{\{C_k\}}(A_1B_1 + A_1B_2 + A_2B_1 - A_2B_2 - A_1 - B_1) \leqslant 0$$

• Joint common cause + commutativity \Longrightarrow Bell inequalities for the original state ϕ

$$-1 \leqslant \phi(A_1B_1 + A_1B_2 + A_2B_1 - A_2B_2 - A_1 - B_1) \leqslant 0$$

Proposition:

• Local causality \Longrightarrow Bell inequalities for the **reduced** state $\phi_{\{C_k\}}$

$$-1 \leqslant \phi_{\{C_k\}}(A_1B_1 + A_1B_2 + A_2B_1 - A_2B_2 - A_1 - B_1) \leqslant 0$$

• Local causality + commutativity \Longrightarrow Bell inequalities for the original state ϕ

$$-1 \leqslant \phi(A_1B_1 + A_1B_2 + A_2B_1 - A_2B_2 - A_1 - B_1) \leqslant 0$$

- (i) $V_C \subset J_-(V_A)$
- (ii) $V_A \subset V_C''$
- (iii) $V_C \subset V_B'$

- (i) $V_C \subset J_-(V_A)$
- (ii) $V_A \subset V_C''$

- (i) $V_C \subset J_-(V_A)$
- (ii) $V_A \subset V_C''$

- (i) $V_C \subset J_-(V_A)$
- (ii) $V_A \subset V_C''$
- (iii) $J_{-}(V_{C}) \supset (J_{-}(V_{A}) \cap J_{-}(V_{B}))$

Causal graph:

d-connected

d-separated

• An open problem. Let $\{\mathcal{N}(V), V \in \mathcal{K}\}$ be a discrete LPT. Construct the Bayesian network $(\mathcal{G}(V), \mathcal{V}(V))$ associated to a region V in \mathcal{K} . Prove (or falsify) that $\{\mathcal{N}(V), V \in \mathcal{K}\}$ is locally causal in Bell's sense $iff(\mathcal{G}(V), \mathcal{V}(V))$ fulfils the Causal Markov Condition for every $V \in \mathcal{K}$.

Conclusions

- Bell's notion of local causality presupposes a clear-cut framework integrating probabilistic and spatiotemporal entities. This goal can be met by introducing the notion of a LPT.
- In this general framework one can define Bell's notion of local causality and show sufficient conditions on which a LPT will be locally causal.
- There is a nice parallelism between local causality and the CCPs: Bell inequalities cannot be derived from neither unless the LPT is classical or the common cause is commuting.
- Is Bell's local causality a Causal Markov Condition?

References

- J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge: Cambridge University Press, (2004).
- J. Butterfield, "Stochastic Einstein Locality Revisited," Brit. J. Phil. Sci., 58, 805-867, (2007).
- J. Earman and G. Valente, "Relativistic causality in algebraic quantum field theory," Int. Stud. Phil. Sci., 28 (1), 1-48 (2014).
- R. Haag, Local Quantum Physics, (Springer Verlag, Berlin, 1992).
- J. Henson, "Non-separability does not relieve the problem of Bell's theorem," Found. Phys.,
 43, 1008-1038 (2013).
- G. Hofer-Szabó, M. Rédei and L. E. Szabó, The Principle of the Common Cause, Cambridge: Cambridge University Press, 2013
- G. Hofer-Szabó and P. Vecsernyés, "Bell inequality and common causal explanation in algebraic quantum field theory," Stud. Hist. Phil. Mod. Phys., 44 (4), 404-416 (2013b).
- G. Hofer-Szabó and P. Vecsernyés, "On Bell's local causality in local classical and quantum theory," forthcoming in *J. Math. Phys.*, (2015).
- T. Norsen, "J.S. Bell's concept of local causality," Am. J. Phys, 79, 12, (2011).
- M. Rédei, "Reichenbach's Common Cause Principle and quantum field theory," Found. Phys., 27, 1309-1321 (1997).
- M. Rédei and J. S. Summers, "Local primitive causality and the Common Cause Principle in quantum field theory," Found. Phys., 32, 335-355 (2002).

Theory of Bayesian networks	Stochastic local classical theory
Bayesian network $ig(\mathcal{G}(V),\mathcal{V}(V)ig)$	Associated to every $V \in \mathcal{K}^m$
Causal graph $\mathcal{G}(V)$	Local von Neumann algebra $\mathcal{N}(V)$
	with $V \in \mathcal{K}^m$
Vertices	Center of minimal double cones in V
Arrows	Pointing to future timelike related
	adjacent minimal double cones
Random variables $\mathcal{V}(V)$	Projections localized in the
	minimal double cones contained in ${\cal V}$
Parents	Projections in past timelike related
	adjacent minimal double cones
Descendants	Projections in future timelike related
	minimal double cones
Causal Markov Condition	Bell's local causality