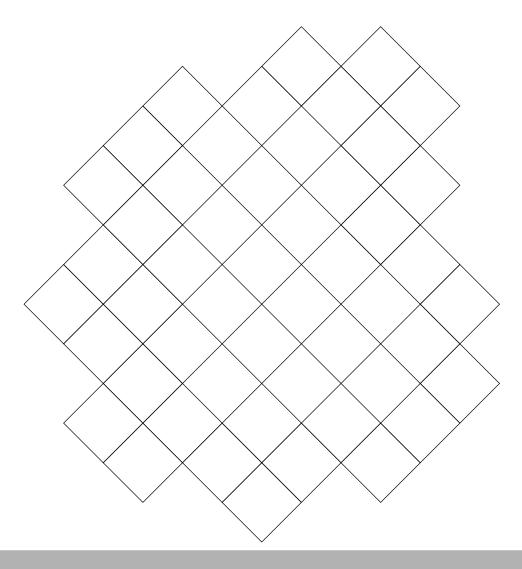
Bell's local causality for philosophers

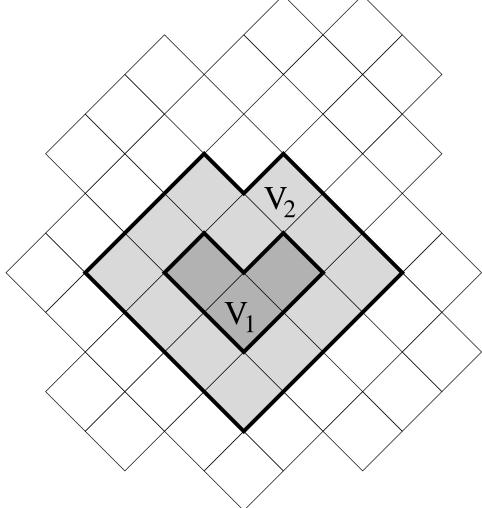
Gábor Hofer-Szabó

Research Centre for the Humanities, Budapest

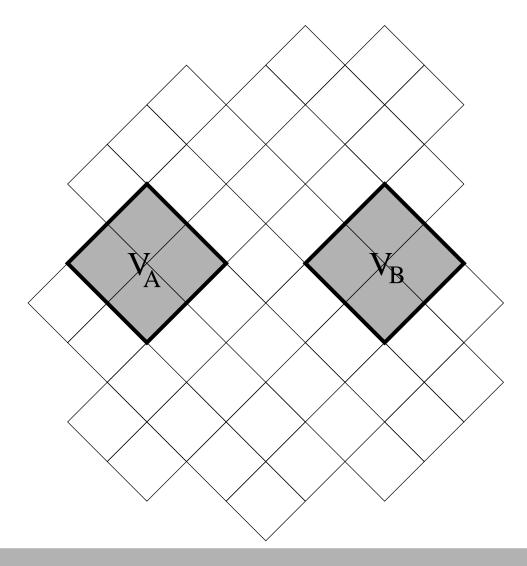

Péter Vecsernyés Wigner Research Centre for Physics, Budapest

Main message

- Bell's notion of local causality presupposes a framework integrating probabilistic and spatiotemporal entities.
- Our aim is to develop such a framework called local physical theory.

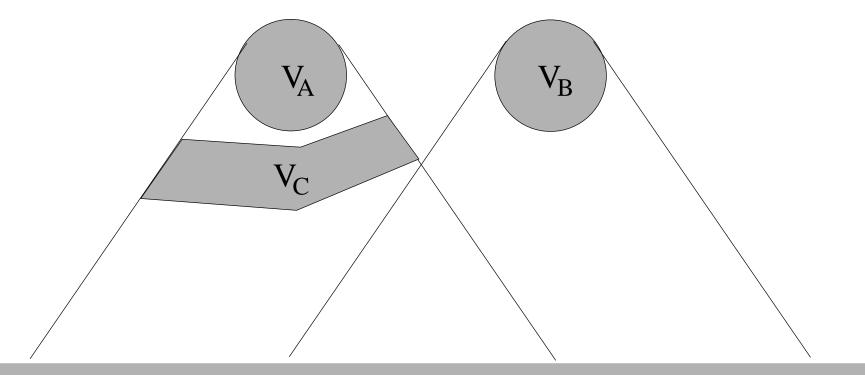

- I. What is a local physical theory?
- **II.** Bell's local causality in a local physical theory
- **III.** Local causality and the Bell inequalities

Discretized Minkowski spacetime:



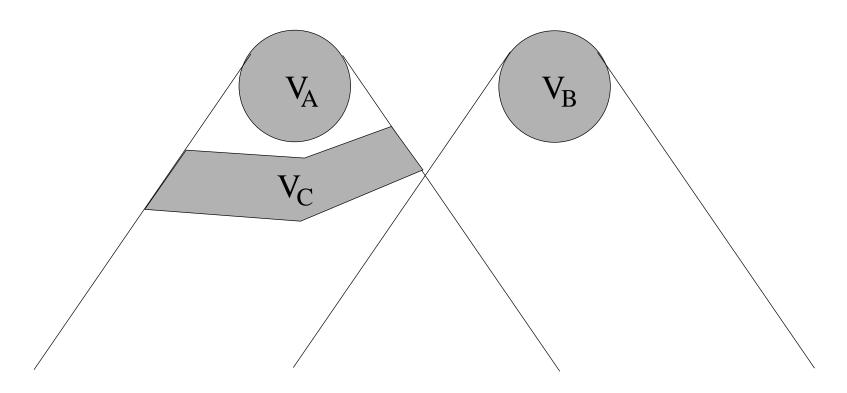
- Definition. A local physical theory (LPT) is a net associating (von Neumann) algebras to spacetime regions which satisfies
 - 1. isotony,
 - 2. microcausality,
 - 3. covariance.

• Isotony: if $V_1 \subset V_2$, then $\mathcal{N}(V_1)$ is a unital subalgebra of $\mathcal{N}(V_2)$


• Microcausality (Einstein causality): $[\mathcal{N}(V_A), \mathcal{N}(V_B)] = 0$

• Covariance: covariant group homomorphism on the net

• "A theory will be said to be locally causal if the probabilities attached to values of local beables in a space-time region V_A are unaltered by specification of values of local beables in a space-like separated region V_B , when what happens in the backward light cone of V_A is already sufficiently specified, for example by a full specification of local beables in a space-time region V_C ." (Bell, 1990/2004, p. 239-240)



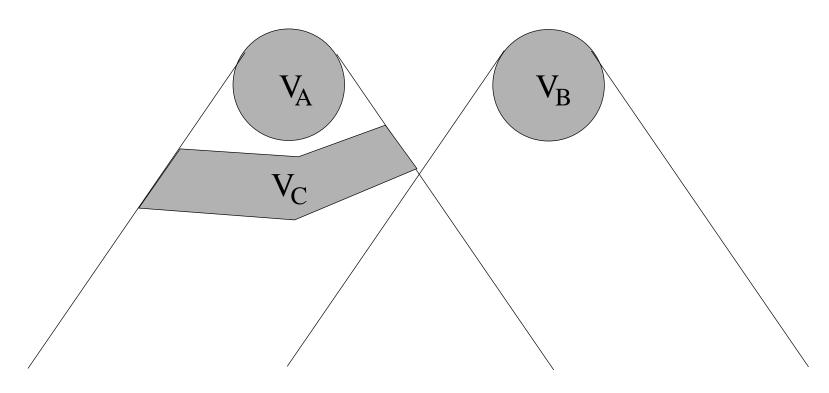
Basic terms:

- 1. "The *beables* of the theory are those entities in it which are, at least tentatively, to be taken seriously, as corresponding to something real."
- 2. "there *are* things which **do go faster than light**. British sovereignty is the classical example. When the Queen dies in London (long may it be delayed) the Prince of Wales, lecturing on modern architecture in Australia, becomes instantaneously King."
- 3. "*Local* beables are those which are definitely associated with particular space-time regions. The electric and magnetic fields of classical electromagnetism, $\mathbf{E}(t, x)$ and $\mathbf{B}(t, x)$ are again examples."

Basic terms:

4. "It is important that region V_C completely shields off from V_A the overlap of the backward light cones of V_A and V_B ."

Basic terms:

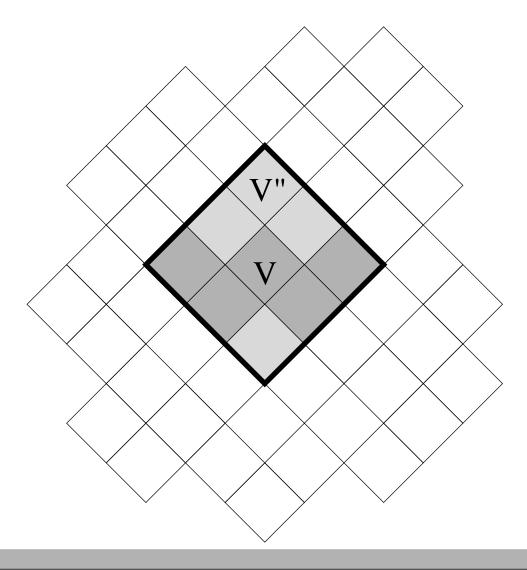

5. "And it is important that events in V_C be **specified completely**. Otherwise the traces in region V_B of causes of events in V_A could well supplement whatever else was being used for calculating probabilities about V_A ."

Translation:

- "local beable" \rightarrow element of a local (von Neumann) algebra
- $\hfill \label{eq:second}$. "complete specification" \longrightarrow an atomic element of a local algebra

• "completely shielder-off region":

(i) $V_C \subset J_-(V_A)$ (ii) $V_A \subset V_C''$ (iii) $V_C \subset V_B''$

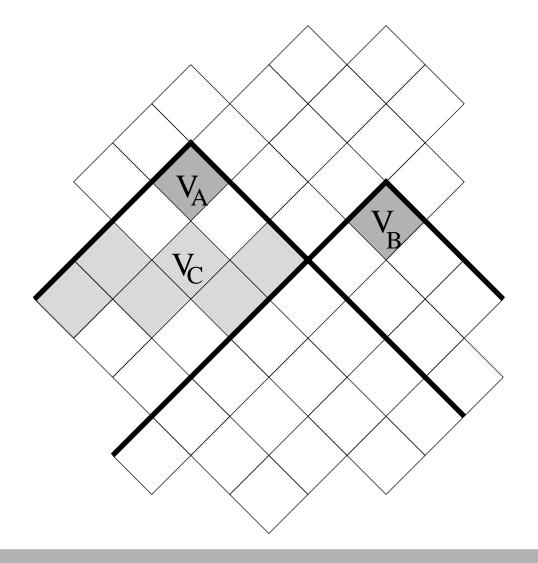

- Definition. A LPT is called (Bell) locally causal, if
 - for any pair of projections $A \in \mathcal{N}(V_A)$ and $B \in \mathcal{N}(V_B)$ supported in spacelike separated regions, and
 - for every locally normal and faithful state ϕ establishing a correlation between A and B, $\phi(AB) \neq \phi(A)\phi(B)$, and
 - for any spacetime region V_C satisfying Requirements
 (i)-(iii), and
 - for any *atomic event* C_k in $\mathcal{N}(V_C)$:

 $\frac{\phi(C_k A B C_k)}{\phi(C_k)} = \frac{\phi(C_k A C_k)}{\phi(C_k)} \frac{\phi(C_k B C_k)}{\phi(C_k)}$

Question:

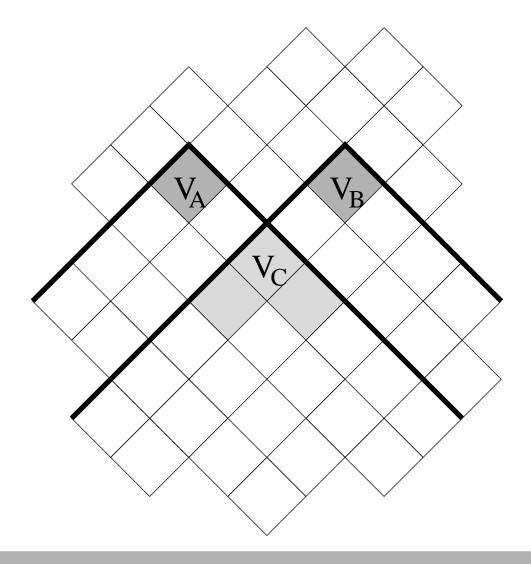
When is a LPT locally causal?

• Local primitive causality: $\mathcal{N}(V) = \mathcal{N}(V'')$ for any V


Proposition:

 Any atomic LPT satisfying local primitive causality is locally causal.

But...


how can a LQT be locally causal if local causality implies the Bell inequalities which are violated for certain quantum correlations?

Local causality:

III. Common Cause Principle

Common Cause Principle:

• A nice **parallelism**:

Local causality \implies Bell inequalities Common Cause Principle \implies Bell inequalities

Proposition:

- Joint common cause \Rightarrow Bell inequalities
- Joint common cause + commutativity => Bell inequalities

Proposition:

- Local causality \Rightarrow Bell inequalities
- Local causality + commutativity => Bell inequalities

Conclusions

- Bell's notion of local causality presupposes a clear-cut framework integrating probabilistic and spatiotemporal entities. This goal can be met by introducing the notion of a LPT.
- In this general framework one can define Bell's notion of local causality and show sufficient conditions on which a LPT will be locally causal.
- There is a nice parallelism between local causality and the CCPs: Bell inequalities cannot be derived from neither unless the LPT is classical or the common cause is commuting.

References

- J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge: Cambridge University Press, (2004).
- J. Butterfield, "Stochastic Einstein Locality Revisited," Brit. J. Phil. Sci., 58, 805-867, (2007).
- J. Earman and G. Valente, "Relativistic causality in algebraic quantum field theory," Int. Stud. ٩ *Phil. Sci.*, **28 (1)**, 1-48 (2014).
- R. Haag, *Local Quantum Physics*, (Springer Verlag, Berlin, 1992).
- J. Henson, "Non-separability does not relieve the problem of Bell's theorem," Found. Phys., **43**, 1008-1038 (2013).
- G. Hofer-Szabó, M. Rédei and L. E. Szabó, The Principle of the Common Cause, Cambridge: Cambridge University Press, 2013
- G. Hofer-Szabó and P. Vecsernyés, "Bell inequality and common causal explanation in algebraic quantum field theory," Stud. Hist. Phil. Mod. Phys., 44 (4), 404-416 (2013b).
- G. Hofer-Szabó and P. Vecsernyés, "On Bell's local causality in local classical and quantum theory," (in preparation) (2014).
- T. Norsen, "J.S. Bell's concept of local causality," Am. J. Phys, 79, 12, (2011).
- M. Rédei, "Reichenbach's Common Cause Principle and quantum field theory," Found. Phys., 27, 1309-1321 (1997).
- M. Rédei and J. S. Summers, "Local primitive causality and the Common Cause Principle in quantum field theory," Found. Phys., **32**, 335-355 (2002).