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Claim of PBR:

• �The quantum state cannot be interpreted statistically� (title of the PBR paper)

What is a statistical interpretation?

• Statistical interpretation:

� M : measurement

� {Ai}: measurement outcomes (i = 1 . . . n)

� p: probability measure on the algebra generated by {Ai}
� The pair ({Ai}, p) has a statistical interpretation ormodel if there exists a (Λ, µ,Mi)

such that for any outcome Ai:

p(Ai) =

∫
Λ
Mi(λ)dµ(λ)

The response functionMi(λ) represents the probability of getting the outcome Ai
if the value of the hidden variable is λ. Obviously,

∑
iMi(λ) = 1 for any λ ∈ Λ.

� (The statistical model is deterministic, if Mi(λ) ∈ {0, 1} for any i and λ.)

• An example:

� From a hat containing many coins we draw one coin then toss it and register the
result. Repeating the tossings we end up with the probability measure:

p(Head) = 0.8

p(Tail) = 0.2

� Three statistical models:

∗ Λ = [0, 1]

∗ Response functions ('bias parameters'):

MH(λ) = λ

MT (λ) = 1− λ

∗ Three probability measures:

µ1 = 0.2δ(0) + 0.8δ(1)

µ2 = δ(0.8)

µ3 =

{
2
d if λ ∈ [0.8− d, 0.8 + d]
0 othervise
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� Interpretation of the three models:

∗ (Λ, µ1,Mi): property interpretation (deterministic)

∗ (Λ, µ2,Mi): propensity interpretation

∗ (Λ, µ3,Mi): mixed interpretation

• Statistical interpretation of QM:

� M : (projective) measurement

� {PMi }: measurement outcomes (an orthonormal basis)

� Probability measure: Tr(W · )
� Statistical interpretation: there is a (Λ, µ,Mi) such that

Tr(WPMi ) =

∫
Λ
Mi(λ)dµ(λ)

• Outcome space {Ai} with a two states: p, p′

� ({Ai}, p, p′) has a statistical model if there exists a (Λ, µ, µ′,Mi) such that:

p(Ai) =

∫
Λ
Mi(λ)dµ(λ)

p′(Ai) =

∫
Λ
Mi(λ)dµ′(λ)

Again,
∑

iMi(λ) = 1 for any λ ∈ Λ.

• The crucial distinction of PBR: a statistical model of ({Ai}, p, p′) is

� ontic: if Supp(µ) ∩ Supp(µ′) = ∅
� epistemic: if Supp(µ) ∩ Supp(µ′) 6= ∅

• Or more precisely: a statistical model of ({Ai}, p, p′) is

� ontic: if µ
(
Supp(µ) ∩ Supp(µ′)

)
= µ′

(
Supp(µ) ∩ Supp(µ′)

)
= 0

� epistemic: if µ
(
Supp(µ) ∩ Supp(µ′)

)
6= 0 or µ′

(
Supp(µ) ∩ Supp(µ′)

)
6= 0.

• Claim of PBR: �The quantum state cannot be interpreted statistically� = �The
quantum state cannot be interpreted epistemically�

The argument of PBR

• Claim: If A is the operator algebra on a �nite Hilbert space and ψ and ψ′ are two pure
states then there exists no epistemic statistical model of ψ and ψ′ which is compatible
with the Born rule.

• Proof: Suppose that ψ and ψ′ has a statistical interpretation that is for every self
adjoint M ∈ A with i = 1 . . . n eigenvalues there exists a (Λ, µ, µ′,Mi) such that

Tr(Wψ P
M
i ) =

∫
Λ
Mi(λ)dµ(λ)

Tr(Wψ′ PMi ) =

∫
Λ
Mi(λ)dµ′(λ)

where PMi is the projection onto the ith eigensubspace of M .
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• Trick: to �nd a measurementM (that is an orthogonal set of projections) separating
the two states:

Tr(Wψ P
M
1 ) = 0

Tr(Wψ′ PM2 ) = 0

• It follows: ∫
Λ
M1(λ)dµ(λ) = 0 =⇒ M1(λ) = 0 if λ ∈ Supp(µ)∫

Λ
M2(λ)dµ′(λ) = 0 =⇒ M2(λ) = 0 if λ ∈ Supp(µ′)

(at least, if µ({λ}) 6= 0 and µ′({λ}) 6= 0)

• Epistemic model: There is a λ∗ in Supp(µ)∩Supp(µ′) =⇒ M1(λ∗) = M2(λ∗) = 0

• But: from the normalization: M1(λ) +M2(λ) = 1 for any λ ∈ Λ, contradiction!

The PBR theorem

• Step 1. If ψ ⊥ ψ′: there is a separating mearurement: PM1 = Pψ and PM2 = Pψ′

• Step 2. If ψ 6⊥ ψ′: no such separating measurement M

� Trick: Consider multiple copies of the system

� Consider a system S with two pure states ψ = |0〉 and ψ′ = |+〉 (where {|0〉, |1〉}
is a basis in H2 and |±〉 := 1√

2
(|0〉 ± |1〉)).

� Now, consider two uncorrelated copies of S. The system S × S can have the
following four pure tensor states composed of |0〉 and |+〉:

|0〉 ⊗ |0〉
|+〉 ⊗ |0〉
|0〉 ⊗ |+〉
|+〉 ⊗ |+〉

� PBR show that there exists four orthogonal projections in H2 ⊗H2, namely

|PM1 〉 =
1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉)

|PM2 〉 =
1√
2

(|0〉 ⊗ |−〉+ |1〉 ⊗ |+〉)

|PM3 〉 =
1√
2

(|+〉 ⊗ |1〉+ |−〉 ⊗ |0〉)

|PM4 〉 =
1√
2

(|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉)

representing a joint measurement on S × S such that

|PM1 〉 ⊥ |0〉 ⊗ |0〉
|PM2 〉 ⊥ |+〉 ⊗ |0〉
|PM3 〉 ⊥ |0〉 ⊗ |+〉
|PM4 〉 ⊥ |+〉 ⊗ |+〉
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� Therefore

Tr(W|0〉⊗|0〉 P
M
1 ) = 0

Tr(W|+〉⊗|0〉 P
M
2 ) = 0

Tr(W|0〉⊗|+〉 P
M
3 ) = 0

Tr(W|+〉⊗|+〉 P
M
4 ) = 0

� Suppose that {|0〉, |+〉} has a statistical model: (Λ, µ0, µ+,M
′
i)

� Independence assumption: Since there is no correlation between the two
copies, the statistical model of{

|0〉 ⊗ |0〉, |+〉 ⊗ |0〉, |0〉 ⊗ |+〉, |+〉 ⊗ |+〉
}

is of the form: (
Λ× Λ, µ0µ0, µ+µ0, µ0µ+, µ+µ+,Mi(λ, λ

′)

)
� Therefore∫

Λ×Λ
M1(λ, λ′)dµ0(λ) dµ0(λ′) = 0 =⇒ M1(λ, λ′) = 0 if (λ, λ′) ∈ Supp(µ0)× Supp(µ0)∫

Λ×Λ
M2(λ, λ′)dµ+(λ) dµ0(λ′) = 0 =⇒ M2(λ, λ′) = 0 if (λ, λ′) ∈ Supp(µ+)× Supp(µ0)∫

Λ×Λ
M3(λ, λ′)dµ0(λ) dµ+(λ′) = 0 =⇒ M3(λ, λ′) = 0 if (λ, λ′) ∈ Supp(µ0)× Supp(µ+)∫

Λ×Λ
M4(λ, λ′)dµ+(λ) dµ+(λ′) = 0 =⇒ M4(λ, λ′) = 0 if (λ, λ′) ∈ Supp(µ+)× Supp(µ+)

� Epistemic model: There is a λ∗ in Supp(µ0)∩Supp(µ+) =⇒ Mi(λ
∗, λ∗) = 0

� But: from the normalization:
∑

iMi(λ, λ
′) = 1 for any (λ, λ′) ∈ Λ × Λ, contra-

diction!

• Step 3. Let |ψ〉 and |ψ′〉 ∈ H2 be any two states in H2. Now, consider the 2n pure
states in ⊗nH2 (where the choice of n depends on the angle between |ψ〉 and |ψ′〉):

|ψ〉 ⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉 ⊗ |ψ〉
|ψ〉 ⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉 ⊗ |ψ′〉
.

.

.

|ψ′〉 ⊗ |ψ′〉 ⊗ · · · ⊗ |ψ′〉 ⊗ |ψ′〉

Then there exis 2n orthogonal projections

|PM1 〉
|PM2 〉
.

.

.

|PM2n 〉
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in ⊗nH2 such that

|PM1 〉 ⊥ |ψ〉 ⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉 ⊗ |ψ〉
|PM2 〉 ⊥ |ψ〉 ⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉 ⊗ |ψ′〉

.

.

.

|PM2n 〉 ⊥ |ψ′〉 ⊗ |ψ′〉 ⊗ · · · ⊗ |ψ′〉 ⊗ |ψ′〉

Ontic vs. epistemic statistical interpretations

• Standard: A statistical model (Λ, µ, µ′,Mi) of
(
{PMi }, ψ, ψ′

)
is

� ontic: if both µ and µ′ are (pure, dispersion-free) Dirac measures

� epistemic: if either µ or µ′ is not a Dirac measure (mixed, dispersed)

• PBR: A statistical model (Λ, µ, µ′,Mi) of
(
{PMi }, ψ, ψ′

)
is

� ontic: if Supp(µ) ∩ Supp(µ′) = ∅
� epistemic: if Supp(µ) ∩ Supp(µ′) 6= ∅

• Why?

• History:

� Spekkens, 2008: Defending the epistemic view of the quantum states in toy models

� Spekkens, 2010:

∗ Einstein's 1935 argument (6= EPR paper) is an argument against ontic models
of the quantum state: assuming local causality there can be many quantum
states associated with the same λ.

�Now what is essential is exclusively that ψB and ψB are in general
di�erent from one another. I assert that this di�erence is incompatible
with the hypothesis that the description is correlated one-to-one with
the physical reality (the real state). After the collision, the real state
of (AB) consists precisely of the real state of A and the real state
of B, which two states have nothing to do with one another. The
real state of B thus cannot depend upon the kind of measurement I
carry out on A. But then for the same state of B there are two (in
general arbitrarily many) equally justi�ed ψB, which contradicts the
hypothesis of a one-to-one or complete description of the real states.�
(Einstein's letter to Schrödinger, 1935)

∗ The Bell theorems using again causal locality exclude both ontic and epistemic

models of the quantum

∗ But without assuming local causality �it remains unclear to what extent a ψ-
epistemic ontological model of quantum theory is even possible.� (Spekkens,
2010, 152.)

� PBR, 2012: No epistemic interpretation of the quantum state
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• Two quotes:

� �The reader might well be wondering why we do not admit that any ψ-incomplete
model is 'epistemic', simply because it associates a probability distribution of
nontrivial width over Λ with each quantum state. We admit that although it might
be apt to say that ψ-incomplete models have an epistemic character, the question
of interest here is whether pure quantum states have an epistemic character. It
is for this reason that we speak of whether a model is 'ψ-epistemic' rather than
simply 'epistemic'. By our de�nitions, ψ has an ontic character if and only if a
variation of ψ implies a variation of reality and an epistemic character if and only
if a variation of ψ does not necessarily imply a variation of reality.� (Harrigan,
Spekkens, 2010, 132.)

� �The most important property of the ontic state . . . [is that]: it sceens o� the
preparation from the measurement. More precisely, for all measurement, the
variable that runs over the outcomes of the measurement and the variable that
runs over the preparation procedures are conditionally independent given the ontic
state.� (Harrigan, Spekkens, 2010, 134.)

• My (desperate) attempts:

� In ontic models quantum states supervene on hidden variable states.

� In ontic models quantum states cluster the hidden variable space.

� In ontic models �the connection between hidden variables and states is functional.�
(Shlosshauer, Fine, 2012, 3.)

� In ontic models quantum states are among the hidden variables.

� Ontic models are non-redundant in the sense that di�erent states are modeled on
di�erent regions of the hidden variable space.

� Using a Bayesian framework one might say that if p and p′ are ontic states then
the change from p to p′ cannot be a change simply in one's knowledge since there
is no underlying λ ∈ Λ which would make both p and p′ true. Something had to
happen in the world which justi�es this change.

• Schlosshauer, Fine, 2012: Ontic and epistemic models can be transformed into one
another.

�The theorem shows the price we may have to pay for a hidden-variables
model that is not segregated [ontic]. We put it this way to make clear that
PBR do not show that mixed [epistemic] models are predictively �awed or
fail to yield the correct quantum statistics for some observables or states of
a given system. Rather, PBR demonstrate a possible di�culty for hidden-
variables models in forming composites of identically prepared systems.� (3.)
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Miscellaneous

Statistical interpretation of PBR

• PBR: ({Ai}, p, p′) has a statistical model if there exists a (Λ, µ, µ′,Mi) such that:

p(Ai) =

∫
Λ
Mi(λ)dµ(λ)

p′(Ai) =

∫
Λ
Mi(λ)dµ′(λ)

• Standard: ({Ai}, p, p′) has a statistical model if there exists a (Λ, µ, µ′,Mi,M
′
i) such

that:

p(Ai) =

∫
Λ
Mi(λ)dµ(λ)

p′(Ai) =

∫
Λ
M ′i(λ)dµ′(λ)

(Or more liberally, Λ 6= Λ′.)

• If Mi 6= M ′i , then there is no contradiction.

• Why should we require that the response functions are independent of the state? One
might prepare the coins in the hat by magnetic �eld in the one case and by biased
mass distibution in the other.

Quantum Bayesianism

• Quantum Bayesianism (Caves, Fuchs, Schack, Zeilinger, Bub): quantum physics is
only about information

• �Basically, PBR call something 'statistical' if two people, who live in the same uni-
verse but have di�erent information, could rationally disagree about it. . . As for what
'rational' means, all we'll need to know is that a rational person can never assign a
probability of 0 to something that will actually happen.� (Scott Aaronson)

� If I think that the next throw of a dice will be even and it turns out to be 6 −→
I am rational

� If I think that the next throw of a dice will be odd and it turns out to be 6 −→
I am irrational
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