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"[Thermodynamics] . . . is the only theory of universal content concerning which I am convinced that,
within the framework of the applicability of its basic concepts, it will never be overthrown."
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�Every mathematician knows it is impossible to understand an elementary course in thermodynamics.�

(Arnold)
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1 A brief history of thermodynamics

1. Pressure

Aristotle took hot and cold as the two of
the four fundamental opposite qualities
and held that nature contains no void
(horror vacui thesis). This Aristotelian
tradition has subsequently been demol-
ished during the 17th century.

Figure 1: Aristotle, 4th century B.C.

Figure 2: Torricelli's void experiment
(1643)

The question of void became the cen-
ter of interest when it was observed that
pumps are able to raise water only up
to roughly 10 m. The �rst to explain
this fact by the air pressure was Beeck-
man in 1618. The experimentum cru-

cis rebutting the horror vacui thesis was
performed by Galileo's pupil Evangelista
Torricelli in 1643.
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The following decades brought with it
passionate disputes concerning the na-
ture of the Torricelli void. Descartes
still endorsed the Peripatetic view on
the plenum of the Cosmos, but Pascal's
careful experiments in the 1640s have
proven that there is vacuum in the Tor-
ricelli void. One of Pascal's famous ex-
periment was his �void in the void� ex-
periment.

Figure 3: Pascal's void within a void ex-
periment (1640s)

Figure 4: Perier's Puy-de-Dôme experi-
ment (1648)

Pascal also devised an experiment, car-
ried out by his brother-in-law Florin
Perier on the mountain Puy-de-Dôme in
1648, to show that the height of the mer-
cury column depended on the air pres-
sure.
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Otto von Guericke, the mayor of Magde-
burg has succeeded in constructing an
air pump which he used to perform
many important experiments, among
them his famous experiment with the
hemispheres in 1654 in Resurgence in the
presence of the emperor.

Figure 5: Guericke's experiment with
the hemispheres (1654)

Figure 6: Boyle's U-shaped glass by
means of which he established his law
(1662)

Robert Boyle, with his assistant Robert
Hooke, has succeeded to build an air
pump and studied the nature of the Tor-
ricelli void. He settled that light can
travel through a vacuum, but sound can-
not. By means of an U-shaped glass
tube he refuted the idea that the pres-
sure of air would not be able to raise a
column of mercury to a height of 76 cm.
He established the Boyle's law in 1662,
according to which the product of the
volume and pressure of a gas is constant,
assuming constant temperature.

2. Temperature. As for thermometry, Galileo was already using thermometers around
1600, but there were no standard �xed points. The epistemic question was how to judge
whether a proposed �xed point is actually �xed in the absence of an already-trusted
thermometer? Halley proposed for example deep caves as the lower �xed point; Joachim
Dalencé proposed the melting point of butter as the upper �x point of the temperature
scale; the Accademia del Cimento proposed the greatest summer heat; Newton proposed
the human body temperature. By the middle of the eighteenth century, a consensus
was emerging about using the boiling and freezing of water as the preferred �xed points,
thanks to the Swedish Celsius.
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Many early pioneers of thermom-
etry, among them Anders Celsius,
used �upside-down� thermometric scale.
They may have thinking about mea-
suring the degrees of cold than de-
grees of heat. The Aristotelian tra-
dition regarded cold as real as heat.
The mechanical philosophy of the sev-
enteenth century understood heat as a
motion and cold as the lack of it, but
it did not plainly rule out cold as a
substance. According to Francis Ba-
con, heat was a particular type of ex-
pansive motion and cold was a similar
type of contractive motion. According
to Pierre Gassendi, heat is caused by
�caloric atoms� and cold is caused by
�frigori�c atoms� whose angular shapes
made them damping down the motion
of atoms. Marc-August Pictet, Genevan
physicist and statesman, in a striking ex-
periment seemed to con�rm the reality
of cold.

Figure 7: Pictet's experiment seemingly
con�rming the reality of cold (1791)

Scientists of the eighteenth century were realists in the sense that they believed in the
existence of an objective property called temperature and persisted in wanting to know
how to measure its true values. However, it turned out that di�erent �uids expand in
di�erent ways. Three materials became especially signi�cant: atmospheric air, mercury
(quicksilver), and ethyl alcohol (spirit of wine). The method to decide which substance
expands uniformly, one used the method of mixtures: mixing equal amount of freezing
and boiling water the common temperature should be 50 C. De Luc, a proponent of
the method, found mercury to be the best substance. However, the method of mixture
assumed that the speci�c heat of substances does not depend on the temperature. This
assumption was, however, challenged by the caloric theory.

The ruling theory of heat in the late 18th century was the caloric theory of heat
advocated by Anton Lavoisier, Joseph Black, Joseph Fourier and William Irvine. It
replaced the alchemical phlogiston theory of of combustion in the 17th century. The core
of the caloric theory was the postulation of caloric, a material substance that was seen as
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a subtle, all-penetrating and weightless substance that was attracted to ordinary matter
but self-repulsive (therefore elastic).

Figure 8: Rumford's cannon boring ex-
periment (1798)

The caloric theory of heat has been dis-
proved by Count Rumford's (Benjamin
Thompson). Measuring the latent heat
he was able to prove that the weight of
the caloricum is practically zero. The
weakest point of the caloric theory was
its inability to provide a plausible expla-
nation for the creation of heat through
friction. His cannon boring experiment
was a death-blow to the substance the-
ory. In this experiment Rumford boiled
water using the heat generated from the
friction of continuous boring of a can-
non. He made water boil in 2.5-hours
time, without the use of �re.

Rumford's experiment inspired Joule to
measure the equivalence of heat and
work in a much more precise way. He
devised an apparatus in which the work
of a falling weight is converted into the
heat of agitation in the water. Based on
this experiment he formulated the prin-
ciple of conservation of energy (also for-
mulated by Julius Mayer earlier).

Figure 9: Joule's experiment (1843)
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Figure 10: Watt's steam engine (1859)

Industrial Revolution has brought with
it a widespread interest in the theory
of heat engines which at that time were
mostly steam engines and initially were
used to pump water in order to drain
deep mines. A decisive innovation of the
steam engine was made by James Watt.
He also invented the �expansive princi-
ple� that is the supply of steam can be
cut o� earlier because of the adiabatic
expansion of the steam.

The calorist Sadi Carnot set himself the
task to understand the e�ciency of the
heat engine using the analogy of a wa-
ter wheel (Q ∼ mass, T ∼ height). He
de�ned it as the ratio of the work per-
formed and the amount of caloric passed
through the engine:

η =
Q(Th − Tc)

QTh
= 1− Tc

Th
6 1

Since for the Carnot cycle

Qc

Qh

=
Tc
Th

his de�nition based on an incorrect anal-
ogy has proved to be correct. His ab-
stract heat engine was operating with
water-steam mixture enclosed in a cylin-
der (rather than evacuated, as in Watt
engine). The graphic representation of
the Carnot cycle originates from Clapey-
ron in 1834.

Figure 11: Carnot cycle (1824)

The kinetic theory of thermodynamics had many precursors. Daniel Bernoulli was the �rst
to explain pressure as arising from the impact of molecular collision and showed that it
was proportional to the vis viva (mv2), but he did not identify vis viva with temperature.
The idea that temperature is proportional to the molecular velocity (but not the square
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of velocity) came from John Herapath. John James Waterston, Scottish engineer was the
�rst to identify temperature with mv2 in 1843.

3. A brief chronology:

4th c., B.C. Aristotle's legacy: (i) Cold
and hot are fundamental opposite
qualities. (ii) There is no void.

1603 Galileo: air thermometer

1643 Evangelista Torricelli: vacuum exper-
iment

1640s Blaise Pascal: void within a void ex-
periment

1662 Robert Boyle's law (Boyle-Mariotte
law)

1663 Otto von Guericke: Magdeburg hemi-
spheres

1695 Guillaume Armontons: �rst predic-
tion of the absolute zero tempera-
ture by extrapolating the pressure-
temperature relation

1710s Daniel Gabriel Fahrenheit: mercury
thermometer

c. 1740 Anders Celsius: centigrade ther-
mometer

Late 18th c. Anton Lavoisier, Joseph
Black: caloric theory of heat

1791 Marc-August Pictet: reality of cold?

1798 Count Rumford (Benjamin Thomp-
son): cannon boring experiment

1799 Sir Humphry Davy: ice-rubbing ex-
periments

1760-1840 Industrial revolution

1802 Joseph Louis Gay-Lussac's law

1824 Sadi Carnot: Carnot cycle

1842 Julius Robert Mayer: principle of
conservation of energy.

1843 James Prescott Joule: equivalence of
work and heat;

John James Waterston: identi�cation
of temperature with vis viva (mv2)

1848 Lord Kelvin (William Thomson): ab-
solute temperature scale based on the
Carnot cycle

1850 Rudolf J. Clausius: �rst and second
laws of thermodynamics; introduction
of the concept of internal energy

1859 James Watt: steam engine

1875 Josiah Willard Gibbs: general formu-
lation of thermodynamics

1897 Max Planck: new formulation of the
second law of thermodynamics

1909 Constantin Carathéodory: axiomatic
thermodynamics

Notes and further readings
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2 Thermodynamics in a nutshell

4. Basic concepts

• Methodological starting point: fundamental laws should be independent of any hy-
pothesis about the microscopic constitution of matter (Reason: positivist-empirical
philosophy, multitude of microphysical hypotheses)

• Thermodynamic state: a small number of parameters describing the system's macro-
scopic state

� Intensive and extensive parameters

• Equations of state: f(p, V, T, n) = 0

� Ideal gas law: pV = nRT

• Temperature. To introduce empirical temperature choose a system with a conve-
nient property x (length, pressure) and take temperature θ to be a linear function of
x: θ(x) = ax+ b. Di�erent θs need not linearly related. For the mercury thermome-
ter x is the length L of the mercury column. To adjust the coe�cients a and b, take
two �xed points: the temperature of the boiling water θb and the temperature of
the melting ice θm. For a centigrade thermometer set θb − θm = 100. Setting also
θm = 0 one obtains

θ(L) =
100(L− Lm)

Lb − Lm
For gas thermometers x is the pressure p of the gas and V and n are kept constant.
Taking again a centigrade thermometer, one obtains:

θ(p) =
100 p

pb − pm
+ b

Now, for low pressure the di�erence in θ between the di�erent gases becomes small,
that is, for di�erent V , n and for di�erent sorts of gases the above straight lines
all meet at p = 0. Taking θ(p = 0) = 0, the constant b will be 0. Substituting pm
in place of p we obtain θm = 273.16. (For a thermometer of double V and same
n, the measured p will be the half, but since it appears both in the nominator and
denominator it drops out.)

The reason for this empirical fact is that real gases at low pressure are close to
ideal gases for which T ∼ p. However, T is not the empirical temperature but the
thermodynamic temperature (see later). That is we are lucky: gas thermometry is
a good method for determining thermodynamic temperature.

• Thermodynamic equilibrium: thermodynamic coordinates are constant over time
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• Processes:

� Quasi-static process: the system is in equilibrium throughout the process
('Moving a cup of tea �lled to the brim without spilling')

� Reversible process: if the initial state of the system and the environment can
be recovered from the �nal state (frictionless piston). A reversible process gives
the maximum amount of work that a system can produce

� Adiabatic process: there is no heat exchange

• Relations:

� Reversible =⇒ quasi-static; but quasi-static 6=⇒ reversible (piston subject to
friction)

� Reversible 6=⇒ adiabatic (frictionless piston); adiabatic 6=⇒ reversible (free
expansion)

� Reversible 6= time reversal invariant

5. Laws

• 'Minus First' Law (U�nk): there is a spontaneous tendency to thermodynamic
equilibrium

• Zeroth Law: 'is in thermal equilibrium with' is a transitive relation (necessary for
de�ning temperature)

• First Law: ∆U = Q+W

• ∆U is a function of state but Q and W are not. (The division of ∆U into Q and
W is path dependent)

• Second Law:

� Clausius' Principle: It is impossible to perform a cyclic process which has no
other result than that heat is absorbed from a reservoir with a low temperature
and emitted into a reservoir with a higher temperature.

� Kelvin's Principle: It is impossible to perform a cyclic process with no other
result than that heat is absorbed from a reservoir and work is performed.

(If temperature is positive,) they are equivalent (Prove after the Carnot cycle!)
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6. Carnot cycle and entropy

• Carnot cycle:

� E�ciency of heat engine: η = W
Q2

= 1− Q1

Q2
6 1

� Coe�ciency of refrigerator: κ = Q1

W
= Q1

Q2−Q1
= 1

η
− 1 > 0

• Carnot Principle:

(i) All reversible heat engines operating between two heat reservoirs have the same
e�ciency.

(ii) No heat engines between two given heat reservoirs can be more e�cient than
a Carnot engine.

• The Carnot Principle is the consequence of the Second Law

• Thermodynamic temperature. Since the e�ciency of the reversible Carnot cycle
depends only on the heat reservoirs and the only relevant property of the heat
reservoirs is the temperature, one can de�ne thermodynamic temperature via the
e�ciency of the Carnot cycle (�rst employed by Lord Kelvin). De�ne thermody-
namic temperature as:

T1

T2

:=
Q1

Q2

For a Carnot cycle between between heat reservoirs of the boiling water and melting
ice the e�ciency is 0.268. Hence, taking

1− Tm
Tb

= 1− Qm

Qb

= η = 0.268 and Tb − Tm = 100

12



one gets Tm = 273.16. For an unknown temperature T just perform a Carnot cycle
between T and, say, Tm, then measure the e�ciency η and de�ne T via

Tm
T

= 1− η

• Entropy

� E�ciency for ideal gas: 1− Q1

Q2
= 1− T1

T2

� Therefore, from the (reversible) Carnot principle, for any system: −Q1

T1
+Q2

T2
= 0

� Generally:
∑

i
±Qi
Ti
−→

∮
dQ
T

� Introduction of a function of state: entropy: S(A) :=
∫ A

0
dQ
T

� For reversible process: S(B)− S(A) =
∫ B
A

dQ
T

� For irreversible process (from the Second Law): S(B)− S(A) >
∫ B
A

dQ
T

• Second Law: S(B)− S(A) >
∫ B
A

dQ
T

� The Second Law is exceptionless

� Entropy is a property of an individual system

� Entropy does not �uctuate

• For adiabatic (∆Q = 0) processes: ∆S > 0

� Reversible adiabatic expansion: ∆Q = 0 therefore ∆S = 0

� Heat conduction (irreversible process): ∆S = ∆S1 + ∆S2 = ∆Q
T1
− ∆Q

T2
=

∆Q( 1
T1
− 1

T2
) > 0

� Free expansion (irreversible process): ∆S = nR log V2
V1
> 0

Notes and further readings
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3 Classical mechanics

7. Hamiltonian mechanics. Classical mechanics (CM) can be treated in many dif-
ferent ways. The treatment best suited to the purposes of statistical mechanics (SM) is
Hamiltonian mechanics.

In CM a system of n point particles is represented by a point x = (q, p) in the phase
space Γ of the system where the components qi and pi stand for the 3n coordinates and
momenta of the particles, respectively. Occasionally, we also will use the notation qa and
pa with the index a = 1 . . . n running over the particles and not the degrees of freedom.
The phase space is endowed with a normed Lebesgue (volume) measure µ. The time
evolution of the system is given by the Hamilton equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
(1)

where H = H(qi, pi, t) is the Hamiltonian of the system. The trajectories of the particles
are solutions

x : R→ Γ; t 7→ x(t)

of the Hamilton equations (1). The Hamilton equations de�ne a Hamiltonian �ow, a one
parameter group of transformations mapping the phase space onto itself for any t. An
important theorem of Hamiltonian mechanics is

Liouville's theorem. The Lebesgue measure is invariant under the Hamiltonian �ow: for
any t and A ∈ F , where F is the Lebesgue measurable subsets of Γ: µ(φt(A)) = µ(A).

The triple (Γ, µ, φt) is called a Hamiltonian dynamical system.
The conservation of energy con�nes the system to the energy hypersurface

ΓE := {x ∈ Γ |H(x) = E}

and induces1 a measure µE on ΓE which also is invariant: µE(φt(AE)) = µE(AE) for any
t and AE ∈ FE.

1By

µE(AE) :=

∫
AE

dσE
||∇H||

where dσE is the surface element on ΓE and

||∇H|| :=

[
n∑
i=1

(
∂H

∂pi

)2

+

(
∂H

∂qi

)2
] 1

2
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8. Harmonic oscillator. A simple example of Hamilton mechanics is the harmonic
oscillator (spring). The Hamiltonian of the spring is

H =
1

2m
p2 +

1

2
kq2

and the equations of motions are

q̇ =
p

m
, ṗ = −kq (2)

Solving (2) one obtains the trajectories which are the following ellipses:

x(t) = (q(t) = A1 sin(ωt+ φ0), p(t) = A2 cos(ωt+ φ0))

with A1 =
√

2E
k
, A2 =

√
2mE and ω =

√
k
m
.

One can show that the Hamilton �ow leaves the volume measure dµ = dq dp invariant
and also the line measure µE.

Notes and further readings

Comprehensive presentations of CM include Arnold (1978), Abraham and Marsden (1980)
and Butter�eld (2007).
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4 Time reversal invariance and irreversibility

9. Symmetries. A physical system has a symmetry if there is a group action of the
group G on R× Γ

α : G× R× Γ→ R× Γ; (g, x(t)) 7→ αg(x(t))

such that for any solution x(t) of the equations of motion of the system, αg(x(t)) is also a
solution. A su�cient condition for this is that the equations of motion remain invariant
under the group action or that the Hamiltonian of the system remains invariant (up to a
constant).

Spatial translation: The symmetry group G is the N -fold direct sum of the translation
group T (3), and for any a = 1 . . . n

α∆qa

(
(qa(t), pa(t))

)
= (qa(t) + ∆qa, pa(t))

where ∆qa is a constant spatial vector. Spatial translation is not a symmetry of the
harmonic oscillator, since

x(t) =
(
q(t) + ∆q, p(t)

)
is not a solution of (2). (Substitute!) Equivalently,

q̇ =
p

m
, ṗ = −k(q + ∆q)

is not of the same form as (2). The harmonic oscillator is not spatial translation invariant.
Generally, if H is spatial translation invariant, then the system is spatial translation
invariant.

Spatial rotation: The symmetry group G is the N -fold direct sum of the rotation group
SO(3), and for any a = 1 . . . n

αR
(
(qa(t), pa(t))

)
= (Rqa(t), Rpa(t))

where R ∈ SO(3).

Spatial inversion: The symmetry group is Z2, and

α−
(
(q(t), p(t))

)
= (−q(t),−p(t))

Spatial inversion is a symmetry of the harmonic oscillator, since

x(t) =
(
− q(t), −p(t)

)
is a solution. The harmonic oscillator is spatial inversion invariant. Generally, if H is
invariant under spatial inversion, then also the Hamilton equations, since:

∂(−qi)
∂t

=
∂H

∂(−pi)
,

∂(−pi)
∂t

= − ∂H

∂(−qi)
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is of the same form as (2).

Time translation: The symmetry group is again T (1), and

α∆t

(
(x(t))

)
= (x(t+ ∆t))

where ∆t is a constant scalar. Time translation is also a symmetry of the harmonic
oscillator, since

x(t) =
(
q(t+ ∆t), p(t+ ∆t)

)
is a solution of (2). The harmonic oscillator is time translation invariant. Generally, if H
is autonomous, H 6= H(t), then the system is time translation invariant.

Noether's theorems connect symmetries and conservation laws in the following way:

• If H is autonomous, H 6= H(t), then

dH

dt
=
∂H

∂t
+
∑
i

(
∂H

∂qi
q̇i +

∂H

∂pi
ṗi

)
=
∂H

∂t
+
∑
i

(
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi

)
= 0

hence the energy E = H is a constant of motion.

• If H 6= H(qi), then

ṗi = −∂H
∂qi

= 0

hence the momentum pi is a constant of motion.

Finally, let us turn to time reversal.

10. Time reversal. The symmetry group is again Z2, and

α−
(
(q(t), p(t))

)
= (q(−t),−p(−t))

Time reversal is a symmetry of the harmonic oscillator. Generally, if H 6= H(t) and
H(qi, pi) = H(qi,−pi) then the system is time reversal invariant, since

∂qi
∂(−t)

=
∂H(qi,−pi)
∂(−pi)

,
∂(−pi)
∂(−t)

= −∂H(qi,−pi)
∂qi

are equivalent to (1). All systems with Hamiltonian of the form

H =
∑
a

1

2ma

p2
a + U(qa)
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are of this kind. Finally, note that conservation of energy

dH

dt
=
∂H

∂t
= 0

is not enough for time reversal invariance.
This leads us to the de�nition of time reversal invariance. Let x(t) be a trajectory in

the phase space of a Hamiltonian system and let T (x(t)) denote the time reversal of x(t).
Let S denote the set of solutions that is all the trajectories which are solutions for the
equations of motion of the theory.

Time reversal invariance. A Hamiltonian system is called time reversal invariant if from
x(t) ∈ S it follows that T (x(t)) ∈ S. In other words, the time reversed of any solution
(process, possible world) is a solution again.

A central question in physics is to check whether a given physical theory, not necessarily
CM is time reversal invariant or not. In order to decide the question, �rst one needs
to de�ne the time reversal transformation in every single theory. If we concentrate only
on its action on the phase space, then a time reversal transformation T is an involution
(T 2 = id). In classical mechanics it is de�ned as: T (q, p) = (q,−p), in classical electrody-
namics as: T (E,B, ρ, j) = (E,−B, ρ,−j), in quantum mechanics as: T (ψ) = ψ∗ and in
thermodynamics as: T = id.

11. Albert vs. Earman and Malament on the physical states. Albert charac-
terizes the time reversal simply as T (s(t)) = s(−t) and takes the state s(t) to be di�erent
from how it is characterized in CM, namely x(t). He takes s(t) to be an instantaneous

state of the system de�ned as follows:

(i) s(t) must be genuinely instantaneous, that is the state descriptions at di�erent times
must be logically, conceptually, and metaphysically independent.

(ii) It must be complete, that is all of the physical facts about the world can be read o�
the full set of state descriptions.

Albert identi�es s(t) with q(t) and not with (q(t), p(t)), and argues that the notion of
velocity is not logically independent form the state of system at other times (�xing the
position at other times �xes the velocity now). He takes CM time reversal invariance in
both senses:

T (q(t)) = q(−t) (3)

T (q(t), p(t)) = (q(−t),−p(−t)) (4)

But he takes (4) to be a consequence of (3): if the path is reversed the velocities change
sign. However, in classical electrodynamics he takes T (E,B, ρ, j) = (E,−B, ρ,−j) to
be unjusti�ed, since �magnetic �elds . . . are not the rates of change of anything� (Albert,
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2002, 20). Therefore, classical electrodynamics is not time reversal invariant. Moreover,
�none of the fundamental physical theories that anybody has taken seriously throughout
the past century and a half is . . . invariant under time-reversal.� (Albert, 2002, 15)

Earman defends the traditional view both in the physical state description and also in
the time reversal invariance of the di�erent physical theories. He says that physics takes
instead of (ii) another completeness criterion:

(ii') All of the physical facts about the world at the time in question can be read o� the
state description at that time.

The simply motivation for this completeness criterion is that one would like to distinguish
the stationary and the moving arrow of Zeno. Physicists also want dynamical completeness
of state descriptions since do not want to preclude ab initio the possibility of Laplacian
determinism.

Two remarks on time reversal invariance:

1. Malament's theorem. Let V µ be a unit timelike vector �eld and let the four-vector
electric �eld Eµ relative to V µ be de�ned from the Maxwell tensor F µν by F µ

ν V
ν . If

(TE)µ = Eµ and if (TE)µ is de�ned as (TF )µν (TV )ν , then the magnetic �eld must
obey the standard transformation law.

2. Time reversal invariance does not mean that we cannot distinguish between future

and past in the sense that for any solution x(t): T (x(t)) = x(t). Time reversal
invariance states only that the set of solutions is invariant, not the solutions indi-
vidually. This latter holds only if the laws are deterministic and (Ts)t = st for a
certain time t, which holds only if the velocities are zero.

�This is just an instance of the more general fact that contingent conditions don't
have to exhibit the symmetries of the laws that govern them, e.g. spatial translation
invariance of the laws doesn't mean that the matter content of space has to be
arranged homogeneously.� (Earman, 2002, 254)

12. Reversibility. The di�erences between time reversal invariance and reversibility
are the following:

1. While time reversal invariance is attributed to a theory, reversibility is a feature of
a process: it means the complete recoverability of the initial state of the system
together with its environment.

2. If a reversible process can be undone by another process, then this new process need
not be the original process retraced step by step in the reverse order.

3. 'Complete recovery' of the initial state involves, not only the system itself, but also
its environment.

Therefore, time-reversal non-invariance and irreversibility are logically independent no-
tions.
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Notes and further readings
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5 Statistical mechanics: the Boltzmann program

13. The aim of statistical mechanics (SM) is to give an account for the thermody-
namic behavior of macroscopic systems in terms of the dynamical laws governing their
microscopic constituents and some probabilistic assumptions. There are two subprojects:

Equilibrium theory: What the dynamical laws have to be to ensure that the macroscopic
parameters remain constant? How can the values of macroscopic parameters like pressure
and temperature be calculated on the basis of the microphysical description?

Non-equilibrium theory: How does a system approach equilibrium when left to itself in
a non-equilibrium state and why? What is microphysical explanation of the fact that
processes in the world are irreversible?

There are two approaches in SM: the Boltzmannian and the Gibbsian approach. We start
with the Boltzmannian.

14. Basic notions. In classical SM the micromechanism underlying TD is represented
by CM. At the thermodynamic level the system is characterized by macrostates Mi

(i = 1 . . .m). The basic assumption of the Boltzmannian approach is the macrostates
supervene on microstates, that is to every microstate x there correspond exactly one
macrostate, Mi(x). Let ΓMi

denote the macroregion associated to Mi on ΓE:

ΓMi
:= {x ∈ ΓE |M(x) = Mi} (5)

{ΓMi
}i forms a partition of ΓE.

The Boltzmann entropy of the macrostate Mi is de�ned as:

SB(Mi) := k log (µE(ΓMi
)) (6)

where k = 1, 38 · 10−23 J
K

is the Boltzmann constant. The logarithmic function is usually
justi�ed by rendering entropy to be an extensive quantity which it is in TD. The equilib-
rium macrostate, Meq, is, by de�nition, the macrostate for which the Boltzmann entropy
is maximal. The aim of the Boltzmann program is to provide a probabilistic justi�cation
of the Second Law in the following form:

Statistical Second Law: If the Boltzmann entropy SB(t1) of the system at time t1 is
below the maximal value, then it is highly probable that at a later time t2 we will have:
SB(t2) > SB(t1).

Callender (2001) argues that TD should not be taken too seriously and irreversibility
should be understood only in the sense of the Statistical Second Law.

Probabilities enter into SM in two di�erent ways. The one is the Proportionality

Postulate: the probability of a macrostate Mi is proportional to the measure of the
corresponding macroregion:

p(Mi) := c µE(ΓMi
) (7)
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where c is a normalization constant. The other is the Statistical Postulate: the probability
that the system's microstate lies in a region AE ∈ FE, given its macrostate is M , is

µE(AE)

µE(ΓM)

15. Boltzmann's (1877) combinatorial argument. Represent the system now not
by a point in the 6n dimensional Γ-space, but by n points in the 6 dimensional one-particle
phase space, the µ-space. Coarse-grain the µ-space into k cells (ω1, ω2 . . . ωk) such that
each cell is a 6 dimensional cubelet with equal volume δω = δ3x δ3v. The cells should be
small enough compared to the system, but big enough to contain enough particles. There
are three key notions in the combinatorial argument:

(i) Microstate: x ∈ Γ or, equivalently, n points in the µ-space.

(ii) Arrangement (coarse-grained microstate): the speci�cation of which of the n parti-
cles is in which cell.

(iii) State distribution Z{ni} = (n1, n2 . . . nk): the speci�cation of how many particles
are in which cell. The number ni is called the occupation number of cell ωi and∑k

i=1 ni = n.

It is assumed that the macrostates of the system depend only on the number of particles in
the di�erent cells, hence state distributions are identi�ed with macrostates. Macrostates
supervene on arrangements and arrangements supervene on microstates: permutation of
particles changes the arrangement but not the distribution; moving particles within the
cells changes the microstate but not the arrangement. The number of arrangements in a
state distribution Z{ni} is

n!

n1!n2! . . . nk!

Each distribution (macrostate) corresponds to a well de�ned region in the Γ-space, the
macroregion

ΓZ{ni} := {x ∈ Γ |Z = Z{ni}} (8)

Macroregions form a partition of Γ: {ΓZ{ni}}. Since each cell corresponds to a region of
equal volume (δω)n in Γ, therefore the volume of the macroregion ΓZ{ni} will be propor-
tional to the number of arrangement in a given distribution:

µ
(

ΓZ{ni}

)
=

n!

n1!n2! . . . nk!
(δω)n

The volume of the di�erent macroregions vary enormously in size: if there are many par-
ticles in the same cell, then µ

(
ΓZ{ni}

)
will be small; for evenly distributed arrangements
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µ
(

ΓZ{ni}

)
will be big. The equilibrium macrostate is de�ned to be the distribution cor-

responding to the largest macroregion (largest 'number' of di�erent microstate). Which
is that?

Boltzmann assumed that the energy Ei of a particle depends only on the cell ωi the
particle is in, that is he neglected interaction between the particles. Hence, the total
energy of the system can be given as

∑k
i=1 niEi = E. With the constraints on Z:

k∑
i=1

ni = n,

k∑
i=1

niEi = E

using the method of Lagrange multipliers and the Stirling formula, Boltzmann shows that
the equilibrium macrostate is the one for which the occupation numbers are:

ni = αe−βEi

where α and β are constants. This is the discrete Maxwell-Boltzmann distribution.

16. Coarse-grained Boltzmann entropy. The combinatorial argument can also be
expressed in terms of entropy. Since macroregions ΓMi

in (5) are in ΓE whereas the
macroregions ΓZ{ni} in (8) of the combinatorial argument are in Γ, �rst we need to identify
them by intersecting by the energy hypersurface:

ΓMi
= ΓZ{ni} ∩ ΓE (9)

We also need to assume the 6n dimensional measure of ΓZ{ni} is proportional to the 6n−1
dimensional measure of ΓMi

for any i:

µE (ΓMi
) = c µ

(
ΓZ{ni}

)
(10)

Hence the Boltzmann entropy (6) can be rewritten as:

SB(Mi) = k log (µE(ΓMi
)) = k log

(
c µ
(

ΓZ{ni}

))
= k log

(
µ
(

ΓZ{ni}

))
+ k log c

Now, de�ning the coarse-grained Boltzmann entropy as

SB,c
(
Z{ni}

)
:= k log

(
µ
(

ΓZ{ni}

))
(11)

Boltzmann entropy and coarse-grained Boltzmann entropy will di�er only in a constant
which does not matter. By means of the Stirling formula the coarse-grained Boltzmann
entropy can be written as:

SB,c
(
Z{ni}

)
=
∑
i

ni log ni + c′(n, δω) (12)
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Introducing the probability pi = ni
n
of �nding a randomly chosen particle in cell ωi we

obtain:

SB,c
(
Z{ni}

)
=
∑
i

pi log pi + c′′(n, δω) (13)

pi is not to be confused by p(Mi) de�ned in (7). The coarse-grained Boltzmann entropy
is: (i) a measure for the number of arrangements compatible with a given macrostate, (ii)
a measure of how much we can infer about the arrangement of the system on the basis of
its macrostate. Again, equilibrium macrostate is, by de�nition, the macrostate with the
largest entropy.

17. Remarks.

(i) In the combinatorial argument there is no mention of dynamics, collisions etc.

(ii) It works only for systems with no interaction. The energy of the particles depended
only on its coarse-grained microstate and not on the state of other particles.

(iii) Is coarse-graining subjective or objective?

(iv) Taking energy cells the combinatorial argument fails to reproduce the Maxwell-
Boltzmann distribution.

(v) Cells cannot be eliminated: in the δω → 0 limit, the coarse-grained Boltzmann
entropy diverges.

(vi) The de�nition of equilibrium has been changed: in TD equilibrium meant station-
arity.

(vii) In what sense does the combinatorial argument explain the Statistical Second Law?

Notes and further readings

For the correct reductive relation between TD and SM see Callender (2001). In many
respect we follow the exposition of SM of U�nk (2007) and Frigg (2008).
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6 Ergodicity

18. Aims. In order to explain the Statistical Second Law it is not enough to say that the
equilibrium macroregion is enormously (typically 10n times) larger than the other regions.
One also needs to know that the non-equilibrium regions are not dynamically detached
from the equilibrium macroregion, that is the microstate of the system randomly wanders
on the energy hypersurface. This is meant to be addressed by the ergodic programme.

19. Ergodicity. Suppose that the underlying dynamics of our thermodynamic system
under investigation can be represented by a dynamical system (ΓE, µE, φt). Let f : ΓE →
R be a phase function that is a Lebesgue integrable function on the accessible region of
the phase space. Since measurement takes time, when measuring a quantity f what we
actually obtain is the (in�nite) time average of f :

f(x) := lim
T→∞

1

T

∫ T

0

f(φtx)dt (14)

Taking the measurement time to be in�nite is a strong idealization. Time average is
empirically meaningful but hard to calculate. On the other hand we have another average
of f , the ensemble average:

〈f〉 :=

∫
ΓE

fdµE (15)

which is easy to calculate but it is not clear how to interpret it. The aim of the ergodic
programme is to relate the two averages. The following theorem claims that time averages
exist:2

Birkho� theorem. Let (Γ, µ, φt) be a dynamical system and let f be an integrable phase
function. Then the time average f(x) (i) exists almost everywhere, (ii) is invariant:
f(x0) = f(φtx0) for all t, and integrable:

∫
Γ
f(x0)dµ =

∫
Γ
fdµ.

Then ergodicity is de�ned as follows:

Ergodicity. A dynamical system (Γ, µ, φt) is ergodic i� for any measurable set A ∈ F such
that µ(A) 6= 0 and for all x ∈ Γ, except for a set of measure 0, it holds that {φt(x)}∩A 6= ∅
for some t.

The central theorem of the ergodic theory is the

Ergodic theorem. Let (Γ, µ, φt) be a dynamical system and let f be an integrable phase
function. Then f = 〈f〉 i� the system is ergodic.

The Ergodic theorem has three corollaries:

2From now on for the sake of simplicity I will use Γ instead of ΓE and µ instead of µE but everything
is understood to happen on the energy hypersurface.
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(i) Let f be χA. Then µ(A) = 〈χA〉 = χA = limT→∞
1
T

∫ T
0
χA(φtx)dt: the measure

of a region is the fraction of time the system spends in the region: a frequentist
justi�cation of the volume measure µ.

(ii) Since f = 〈f〉 and 〈f〉 does not depend on x, therefore neither f does. Therefore
trajectories started from almost any point will come arbitrary close to any points (=
will intersect any region of non-zero measure) on the energy hypersurface in�nitely
many times.

(iii) Let (Γ, µ, φt) be ergodic. Let µ′ be a φt-invariant measure that is absolutely con-
tinuous with respect to µ (that is for any measurable A ⊆ Γ if µ(A) = 0, then
µ′(A) = 0). Then µ′ = µ. (Loosely: if the system is ergodic, there is only one time
invariant measure).

To sum up, if the system is ergodic then µE(ΓMi
) can be interpreted as a fraction of time

(sojourn time) the system spends in macroregion ΓMi
. Since the equilibrium macroregion

is, by de�nition, the one with the largest µE-measure, it will also be the region in which the
system spends most of its time. Hence, an ergodic system started from almost microstate
will evolve into ΓMeq and stays there except for some tiny �uctuations.

20. Ergodic hierarchy. There is an equivalent de�nition of ergodicity:

Decomposability. A dynamical system (Γ, µ, φt) is decomposable i� Γ can be partitioned
into two (or more) invariant regions of non-zero measure, that is if there are A,B ⊆ Γ
such that A∩B = ∅, A∪B = Γ, µ(A) 6= 0 6= µ(B) and φt(A) ⊆ A and φt(B) ⊆ B for all
t. A system is indecomposable (metrically transitive) if not decomposable.

In a decomposable system 〈f〉 6= fA: Let f be χA where A is an invariant region with
µ(A) 6= 0, 1. Then µ(A) = 〈χA〉 6= χA = 1.

There is another ergodic property which is a stronger property than ergodicity:

Mixing. A dynamical system (Γ, µ, φt) is mixing i� for all A,B ∈ F : limt→∞ µ(φtA∩B) =
µ(A)µ(B). Intuitively, mixing means that the dynamics homogeneously distributes the
points of A over all measurable set B in the long run (cocktail analogy).

Mixing entails indecomposability: Let B = A invariant subsets of Γ. Then limt→∞ µ(φtA∩
A) = µ(A) = µ(A)µ(A) =⇒ µ(A) ∈ {0, 1}. Indecomposability, however, does not entail
mixing: 1-dimensional harmonic oscillator is indecomposable but not mixing: The energy
hypersurface is the trajectory itself (an ellipse) and hence indecomposable but not mixing.

In studying deterministic random systems a whole hierarchy of ergodic systems was
born (Bernoulli system =⇒ K system =⇒ mixing =⇒ weak mixing, ergodicity = inde-
composability).

21. Discussion. It is extremely di�cult to prove that a system is ergodic, let alone
mixing, etc. Ergodicity is proven for a system of n 6 4 elastic hard balls moving in a
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cubic box and a system of n > 2 elastic hard balls moving in a k-torus (Sinai's ergodic
hypothesis (1963) solved by Simányi, Szász). Ironically, it is known for many systems that
they are not ergodic: Kac ring model; a system of n uncoupled anharmonic oscillators of
identical mass; molecules oscillating in a solid; a system of non-interacting point parti-
cles. Moreover, the KAM-theorems3 indicate that ergodicity cannot be a generic property
in Hamiltonian systems. Since we observe thermodynamic behavior also in non-ergodic
systems, ergodicity cannot provide the whole story in explaining the phenomena. More-
over, thermodynamic behavior is thought to be arising from a system consisting of a large
number of particles. On the other hand, ergodicity identi�es ensemble average with in�-

nite time average which is an irrealistic assumption. (Moreover, why should observables
be equated with time averages at all?) Finally, the Birkho� theorem holds only almost

everywhere. But what justi�es the neglect of measure zero sets?

Notes and further readings

3KAM theorems show that in typical Hamiltonian systems the trajectories con�ned to an invariant
set will continue to have that property even is perturbed.
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7 Objections to the Boltzmann program

22. Historically there have been two major objections to the Boltzmann program:
Loschmidt's Reversibility objection (Umkehreinwand, 1876) and Zermelo's Recurrence
objection (Wiederkehreinwand, 1896). Both objections were devised to show that the ir-
reversible character of TD is incompatible with the underlying theory of CM. Loschmidt's
Reversibility objection was directed against Boltzmann's earlier work on SM in the 1870s
which attempted to provide a non-statistical underpinning to TD. Boltzmann's (1877)
combinatorial argument was a response to Loschmidt. Zermelo's Recurrence objection
shed light on the role of initial conditions in the statistical arguments and highlighted
what later became known as the Past Hypothesis, an assumption about the initial condi-
tion of the Universe.

23. The Reversibility objection has two premises:

1. CM is time reversal invariant: if x(t) is a solution, then T (x(t)) = (q(−t),−p(−t))
also is a solution.

2. Marcostates are �time reversal invariant�: for a macrostate M de�ne the time re-
versed macrostate T (M) by means of the time-reversed macroregion

ΓT (M) := {x ∈ Γ |T (x) ∈ ΓM} (16)

Then according to the second premises: T (M) = M . Consequently, SB(M) =
SB(T (M)).

As a consequence, for any trajectory (solution) x(t) such that x(t1) ∈ M1, x(t2) ∈ M2,
t1 < t2 and

SB(M1) < SB(M2)

there exist a time reversed trajectory T (x(t)) such that −t2 < −t1 and

SB(T (M2)) = SB(M2) > SB(M1) = SB(T (M1))

In other words, for any time segment for which the entropy is increasing there is another
time segment for which the entropy is decreasing. This argument has a bite against
the reduction of the original Second Law but not against the Statistical Second Law
formulated above. Actually, Loschmidt's Reversibility objection was a motivation for the
statistical reading of it. Boltzmann was not deeply moved by the argument; he responded
laconically: �Go ahead and reverse the momenta!�

Now, though Loschmidt's Reversibility objection does not contradict to the Statistical
Second Law, it still makes it di�cult to understand why the Statistical Second Law
holds true. Let t1 = 0. Then for any trajectory starting from the macrostate M1 at t1
and ending up in a macrostate M2 of higher entropy at a later time t2, there is also a
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trajectory starting from the same macrostate M2 at an earlier time −t2 and ending up
in a macrostate M1 at time t1. Hence, the measure µE(ΓM+

1
) of those microstates in M1

for which the entropy is increasing in the next ∆t time period is equal to the measure
µE(ΓM−1 ) of those microstates in M1 for which the entropy has been decreasing for the
previous ∆t period. Moreover, if �highly probable� in Statistical Second Law means that

µE(ΓM+
1

)

µE(ΓM1)
≈ 1

then it follows that most of the microstates in M1 are �turning points� that is points such
that the Boltzmann entropy on the adjacent trajectory increases in both forward and
backward in time. And this is case with any non-equilibrium macrostate.

24. The Past Hypothesis is Boltzmann's response to the Reversibility objection. The
Reversibility objection predicts an entropy increase for almost all macrostates in both

time directions. This prediction is factually false since entropy of a typical thermody-
namic system decreases as we go back in time. To resolve the contradiction between the
Reversibility objection and empiricism, one needs to �nd an argument why statistical
explanations cannot be used for retrodiction. One can then argue that physical laws,
such as the Statistical Second Law, can account for physical phenomena only together
with initial conditions. The proponents of this argument then posit a low entropy initial
condition for the system under investigation. Hence, the entropy of the system cannot
increase backward in time simply because the time period before the initial condition is
not part of the process under investigation.

�Initial conditions� can be understood in many di�erent ways. The Past Hypothesis
understands it in a cosmological aspect: the entropy of the Universe around the Big Band
was low. The Past Hypothesis goes back to Boltzmann; it has been forcefully defended
by Albert and seen by Price �as the most important achievement of the late-twentieth-
century physics�. Earman, however, �nds the hypothesis �not even false� since in most
cosmological theories the notion of Boltzmann entropy cannot even be de�ned. An even
bigger problem is that it is not at all clear how the initial low-entropy state of the Universe
can account for the unidirectional increase of the entropy in everyday thermodynamic
systems. An attempt to adjust this problem is Reichenbach's �branch system approach�
according to which thermodynamic systems branch o� from and return back into the rest
of the Universe �inheriting� the entropy increase from it.

25. The Recurrence objection is based on Poincaré's Recurrence theorem (1889)
stating that in a Hamiltonian system enclosed in a �nite volume with a �nite energy
almost all states will eventually return to arbitrary close to itself.

Poincaré's Recurrence theorem. Let (Γ, µ, φt) a dynamical system with µ(Γ) < ∞. Let
A ∈ F be any measurable subset of Γ, and de�ne the set B for a given time τ as

B := {x ∈ A | ∀t > τ : φt(x) /∈ A}
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Then µ(B) = 0.

Proof. Denote φt(B) by Bt. Since no point returns from B back to A and hence to B,
therefore there exists a large enough t such that µ(B ∩ Bt) = 0. It also follows that for
any n ∈ N: µ(B ∩ Bnt) = 0. Now, since φt is a bijection it also follows that for any two
n1 < n2 ∈ N: µ(Bn1t ∩ Bn2t) = 0, otherwise µ(B ∩ B(n2−n1)t) were not zero. But from
Liouville's theorem µ(Bnt) = µ(B) for any n. Since µ(Γ) <∞, therefore µ(B) = 0.

Zermelo's Recurrence objection is making use of Poincaré's Recurrence theorem as follows.
After a Poincaré cycle a �nite system gets back 'very' close to its initial state. If the
entropy SB(M(x)) is continuous in x (assumption!), then it cannot increase monotonically.
As Poincaré puts it:

�According to this theory, to see heat pass from a cold body into a warm one, it will not be

necessary to have the acute vision, the intelligence and the dexterity of Maxwell's demon;

it will su�ce to have a little patience.�

Boltzmann responded by a rough calculation pointing out that �little patience� = 101019

seconds for a cubic centimeter of air (microstates are de�ned here within 10Å spatial
position for each molecule and within 1-3% speed value).

Notes and further readings

For the objections to the Boltzmann program see Sklar (1993), U�nk (2007) and Frigg
(2008, 117-119). For the Past Hypothesis see Albert (2000, Ch. 4); for a criticism see
Earman (2006).
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8 The Gibbs approach

26. Ensembles. While the Boltzmann approach considers one individual system, the
Gibbs program start its analysis with an ensemble of systems. As Gibb (1902) writes:

�We may imagine a great number of systems of the same nature, but di�ering in the con-

�gurations and velocities which they have at a given instant, and di�ering not merely in-

�nitesimally, but it may be so as to embrace every conceivable combination of con�guration

and velocities. And here we may set the problem, not to follow a particular system through

its succession of con�gurations, but to determine how the whole number of systems will

be distributed among the various conceivable con�gurations and velocities at any required

time, when the distribution has been given for some one time�

What are these ensembles? They are "mental copies of the one system under considera-
tion" (Schrödinger); they do not interact with each other.

The formalism of the Gibbs approach starts with a probability density function ρt(x)
on the 6n dimensional Γ-space (the Gibbs approach does not use the µ-space), where
x = (q, p). The essence of the Gibbs approach is that the observable quantities are
associated to ensemble average of phase functions f(x, t)

〈f〉t =

∫
Γ

fρt dµ

Now, due to the Liouville's theorem

dρt
dt

=
∂ρt
∂t

+ {ρt, H} = 0

(proved by the 6n dimensional continuity equation) ρ '�ows' as an incompressible �uid.4

So the dynamics ρt(x) := ρ0(φ−tx) can be expressed in the Hamiltonian mechanics as

∂ρt
∂t

= {H, ρ}

A probability density ρt(x) is stationary if for all t and x : ρ0(φ−tx) = ρ0(x) which means
that

∂ρt
∂t

= 0

Stationary probability densities characterize equilibrium since they yield constant aver-
ages:

∂ 〈f〉t
∂t

=

∫
Γ

f
∂ρt
∂t
dµ = 0

4The Poisson bracket {ρ,H} is de�ned as {ρ,H} :=
∑2rN
i=1

(
∂ρ
∂qi

H
∂pi
− ∂ρ

∂pi
H
∂qi

)
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if f does not depend explicitly on time. The special cases are:

ρE(x) =
1

ω(E)
δ(H(x)− E) (microcanonical: E,N is �xed)

ρT (x) =
1

Z(T )
e
−H(x)
T (canonical: N is �xed, E can vary)

ρT,α(x,N) =
1

N !Z(T, α)
e
−H(x)
T+αN (grand-canonical: E,N can vary)

27. The Gibbs entropy. The �ned-grained Gibbs entropy is de�ned as follows:

SG,f (ρ) := −k
∫

Γ

ρ log(ρ) dµ

For the above constraints the appropriate distribution has the maximal �ne-grained Gibbs
entropy.

Now, how SG,f changes with the dynamics φt? Due to Liouville's theorem the �ne-
grained Gibbs entropy remains constant:

dSG,f
dt

=
∂SG,f
∂t

= 0

(See (Zeh, 2007, 52)). So the �ned-grained Gibbs entropy cannot tend towards equi-
librium. Therefore Gibbs introduced his ink drop analogy: mixing two incompressible
�uids: �rst take �nite regions, then stir the �uids, then tend to zero with the volume of
the regions (6= �rst tend to zero with the volume of the region, then stir the �uids!)

He introduced a coarse-graining :

CG : ρ(x) 7→ ρ̂(x) =
∑
i

ρ̂(i)1ωi(x), where ρ̂(i) :=
1

δω

∫
ωi

ρ(x)dx

and by this the coarse-grained Gibbs entropy :

SG,c(ρ) := SG,f (ρ̂) = −k
∫

Γ

ρ̂ log(ρ̂) dµ

Now, SG,c[ρ] is not constrained by Liouville's theorem! But does the coarse-grained Gibbs
entropy evolve towards the equilibrium state? It is true that: SG,c[ρ] > SG,f [ρ]. (The
equality holds only if the �ne-grained distribution is uniform over the cells.) But SG,c[ρ]
is non-decreasing only if the system is mixing.

Notes and further readings

Gibbs' seminal work is (Gibbs 1902).
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9 Entropy and information

28. Entropy is a term de�ned in a whole bunch of disciplines from information theory
to physics, biology and ecology. First we brie�y list some notions of entropy used in SM.

1. Thermodynamic entropy is a macrovariable in thermodynamics de�ned for a given
equilibrium state A of temperature T as:

ST (A) :=

∫ A

O

dQ

T

where O is a reference equilibrium state. The Planck version of the Second Law then
reads as follows: For any process from state A to state B:

ST (B) > ST (A)

2. Fine-grained Boltzmann entropy is de�ned as the logarithm of the measure of that
region of the phase space which is compatible with a given set of macrostates:

SB,f (Mi(x)) := k log
(
µE(ΓMi(x))

)
The subindex in µE is to account for the constraints such as the energy hypersurface. The
logarithm is to make the entropy an extensive quantity. A microstate x has entropy by
means of the macrostate Mi supervening on x.

3. The coarse-grained Boltzmann entropy was introduced by Boltzmann in his 1872 pa-
per as a reaction to objections to his former works. For a given coarse-graining of the
phase space any (�ne-grained) microstate x determines an arrangement (a coarse-grained
microstate) which further determines a state distribution. The coarse-grained Boltzmann
entropy is the logarithm of that phase space region which is compatible with a given
distribution Z{ni}:

SB,c(Z{ni}(x)) := k log
(
µ(ΓZ{ni}(x))

)
In other words, the coarse-grained Boltzmann entropy is the number of arrangements
compatible with a given distribution times the volume of the elementary cell. Again, a
microstate x has entropy by means of the distribution Z{ni}(x) as a function on Γ.

The coarse-grained Boltzmann entropy is a special case of the �ne-grained Boltzmann
entropy where macrostates are given by state distributions (partition functions).

4. The �ne-grained Gibbs entropy refers to an ensemble rather than to an individual
system and is de�ned as:

SG,f (ρ(x)) := −k
∫

Γ

ρ(x) log(ρ(x)) dµ
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where ρ(x) is the probability density. The �ne-grained Gibbs entropy can be related to
an individual system if ρ(x) can be interpreted either as the frequency of �nding a given
individual system in the microstate x within the whole ensemble; or as the fraction of
time a given system spends in x. Both interpretations are dubious. Moreover, due to the
Liouville theorem the �ne-grained Gibbs entropy is constant over time.

5. The coarse-grained Gibbs entropy is de�ned as the �ne-grained Gibbs entropy of the
coarse-grained probability density ρ̂:

SG,c(ρ) := SG,f (ρ̂) = −k
∫

Γ

ρ̂ log(ρ̂) dµ

It is introduced to tackle the problem of the constancy of the �ne-grained Gibbs entropy.

29. Information theory also uses various notions of entropy such as the Shannon
entropy, Rényi entropy, Hartley entropy, von Neumann entropy, etc. Let us see some of
them.

6. The Shannon entropy is devised to answer the question as to how much information is
contained in a set of messages emitted by a source.

First, we need to de�ne the information we obtain by observing an event having
probability p. This can be settled by assuming that the information as a function of p
satis�es the following properties:

1. Positivity. I(p) > 0.

2. Normalization. I(1) = 0.

3. Additivity. The information adds up for independent events: I(p1 · p2) = I(p1) +
I(p2).

4. Continuity. I(p) is a monotonic and continuous function of p.

Then one can show that the information has the following form:

I(p) = logb (1/p) = − logb(p)

Due to

loga(x) = loga(b) logb(x) = c logb(x)

the di�erent bases simply measure the information in di�erent units. Hence we drop the
basis.

Next suppose that a source produces n di�erent messages (events) with a probability
distribution p = (p1, p2 . . . pn). The Shannon entropy is the average amount of information
we obtain from the source:

SSh(p) := −
n∑
i=1

pi log pi
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The Shannon entropy can be generalized for the continuous case as

SSh(p) := −
∫
R
ρ(x) log(ρ(x)) dx

Now, the discrete Shannon entropy is related to the coarse-grained Boltzmann entropy
and the continuous Shannon entropy is related to the �ne-grained Gibbs entropy (modulo
the Boltzmann constant k). The second is obvious; to see the �rst suppose that n is
large, hence by means of the Stirling formula the coarse-grained Boltzmann entropy can
be written as:

SB,c
(
Z{ni}

)
=
∑
i

ni log ni + c (17)

Introducing the probability pi = ni
n
of �nding a randomly chosen particle in cell ωi we

obtain:

SB,c
(
Z{ni}

)
=
∑
i

pi log pi + c′ (18)

which is the discrete Shannon entropy.

Before going over to the next type of entropy it is instructive to introduce a notion called
majorization which measures how mixed a given probability distribution is. Let p and q
be two discrete probability distributions on a set of n events. We say that q majorizes p,
p � q i�

k∑
i=1

p↓i 6
k∑
i=1

q↓i ∀k = 1 . . . n

where ↓ in the superscript means decreasing order. It is easy to see that majorization is a
partial order on the set of probability distributions up to permutations and the smallest
and greatest elements are the uniform distribution (pi = 1/n)and the pure state (p = p2),
respectively:

(1/n, 1/n, . . . , 1/n) � p � (1, 0, . . . , 0)

Now, one is looking for real-valued functions f on the probability distributions compatible
with majorization in the sense that

p � q ⇐⇒ f(p) > f(q) (19)

In other words, f should be greater for more mixed probability distributions. Functions
satisfying (19) are called Schur-concave. Schur-concavity is the de�nitive property of the
general notion of entropy. Hence f represents mixedness in the same sense as utility
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represents preference order. But note that entropy can be compared for any pair of
probability distributions not just for those can be related by majorization. Majorization
is a partial ordering, whereas entropy totally orders the distributions.

7. Rényi entropy is a generalized entropy in the above sense:

SR(p) :=
1

1− q
log
∑
i

pqi q > 0

For q → 1 it gives back the Shannon entropy and for q → 0+ if gives back the Hartley

entropy

SH(p) := log
∣∣{i | pi 6= 0}

∣∣
8. Von Neumann entropy is the generalization of Shannon entropy for the quantum case.
In QM probability distributions are replaced by states represented by density matrices.
For a given state ρ the von Neumann entropy is de�ned as follows:

SvN(ρ) := −Tr(ρ log ρ)

The quantum analogue of the other classical entropy concepts can be de�ned in a similar
way.

Notes and further readings

This section is partly based on (Frigg and Werndl, 2011) and partly on (Bengtsson and
�yczkowski, 2006).
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Appendix A: The Ehrenfests' dog-�ea model

30. The Ehrenfests' dog-�ea model (also known as urn model) provides an instruc-
tive model for a process approaching to equilibrium. Two dog, a white (W ) and a black
(B), share a population of �eas indexed from 1 to N. Suppose that N is even. At each
second a number from 1 to N is chosen randomly and the �ea labeled by this number
jumps on the other dog. The microstates of the model are the speci�cation of which �ea
is on which dog; and the macrostates are the numbers (W,B) of �eas on the two dogs.
Since B = N −W , it is enough to consider W as a macrostate. There are 2N microstates
and N + 1 macrostates of the system.

First note that the process de�ned in the model is stochastic, moreover Markovian
with time independent transition probabilities:

p
(
(W − 1)t+1 |Wt

)
=

W

N
(20)

p
(
(W + 1)t+1 |Wt

)
= 1− W

N
(21)

One can see that the transition probabilities drive any macrostate W in the direction of
the macrostate N

2
which is called the equilibrium macrostate.

Given the probability distribution
{
p
(
Wt

)}
of the macrostates at time t one can

calculate by means of (20)-(21) the probability distribution at time t+ 1:

p
(
Wt+1

)
= p

(
Wt+1 | (W − 1)t

)
p
(
(W − 1)t

)
+ p
(
Wt+1 | (W + 1)t

)
p
(
(W + 1)t

)
=

(
1− W − 1

N

)
p
(
(W − 1)t

)
+

(
W + 1

N

)
p
(
(W + 1)t

)
(22)

Let

〈W 〉t :=
N∑

W=0

p
(
Wt

)
W (23)

denote the expectation value of the macrostate W at time t. Using (20)-(21) and (22)
one can calculate the evolution of the expectation value:

〈W 〉t+1 =
N∑

W=0

p
(
Wt+1

)
W

=
N∑

W=0

[(
1− W − 1

N

)
p
(
(W − 1)t

)
+

(
W + 1

N

)
p
(
(W + 1)t

)]
W

=
N∑

W=0

[(
1− 2

N

)
W + 1

]
p
(
Wt

)
=

(
1− 2

N

)
〈W 〉t + 1 (24)
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where in the shifting of the summation index in the third row we assumed that the
macrostates W = −1 and W = N + 1 are not admissible. The solution of the di�erence
equation (24) is:

〈W 〉t =

(
1− 2

N

)t(
〈W 〉t=0 −

N

2

)
+
N

2
(25)

showing that starting from any macrostate the expectation is approaching to the equilib-
rium macrostate W = N

2
.

One also can calculate the unique time-invariant probability distribution with respect
to the transition probabilities (20)-(21) which is:

p
(
W
)

=
1

2N

(
N

W

)
(26)

since using (22) one obtains:

p
(
Wt+1

)
= p

(
Wt+1 | (W − 1)t

)
p
(
(W − 1)t

)
+ p
(
Wt+1 | (W + 1)t

)
p
(
(W + 1)t

)
=

(
1− W − 1

N

)(
N

W − 1

)
+

(
W + 1

N

)(
N

W + 1

)
=

1

2N

(
N

W

)
= p
(
Wt

)
(27)

Using the time invariant measure (26) and the Bayes rule the backward transition
probabilities turn out to be equal to the forward transition probabilities:

p
(
(W − 1)t−1 |Wt

)
= p

(
Wt | (W − 1)t−1

) p((W − 1)t−1

)
p
(
Wt

)
=

(
1− W − 1

N

) ( N
W−1

)(
N
W

) =
W

N
= p
(
(W − 1)t+1 |Wt

)
p
(
(W + 1)t−1 |Wt

)
= p

(
Wt | (W + 1)t−1

) p((W + 1)t−1

)
p
(
Wt

)
=

W + 1

N

(
N

W+1

)(
N
W

) = 1− W

N
= p
(
(W + 1)t+1 |Wt

)
That is the process is time-reversal invariant.

Now, by means of the invariant measure (26) we can calculate the probability for a
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macrostate Wt of having come from (W − 1)t−1 and returning to (W − 1)t+1:

p
(
(W − 1)t+1 ∧ (W − 1)t−1 |Wt

)
=

p
(
(W − 1)t+1 ∧Wt ∧ (W − 1)t−1

)
p
(
Wt

)
=

p
(
(W − 1)t+1 |Wt

)
p
(
Wt | (W − 1)t−1

)
p
(
(W − 1)t−1

)
p
(
Wt

)
=

W
N

(1− W−1
N

) 1
2N

(
N

W−1

)
1

2N

(
N
W

) =
W 2

N2
(28)

Similarly,

p
(
(W − 1)t+1 ∧ (W + 1)t−1 |Wt

)
=

W (N −W )

N2
(29)

p
(
(W + 1)t+1 ∧ (W − 1)t−1 |Wt

)
=

W (N −W )

N2
(30)

p
(
(W + 1)t+1 ∧ (W + 1)t−1 |Wt

)
=

(N −W )2

N2
(31)

For Wt >
N
2
, (28) is bigger than (31); for Wt <

N
2
, (31) is bigger than (28). This means

that for any macrostate Wt the most probable history, especially if it is far away from
equilibrium, is to having arrive and returning to a macrostate which is closer to the
equilibrium macrostate. A non-equilibrium macrostate is most probably an endpoint of
a �uctuation.

The dog-�ea model, though stochastic, is an ergodic Markov process in the sense it is
possible to get from every macrostate to every other macrostate with positive probability.

Notes and further readings

The dog-�ea model was invented by the Ehrenfests (1907). For a nice treatment and
computer simulation see (Emch and Liu, 2002).
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Appendix B: The Kac ring model

31. The Kac ring model is a non-ergodic, explicitly solvable model with a determinis-
tic and time-reversal invariant dynamics displaying irreversible thermodynamic behavior.
It was introduced by Marc Katz in 1956.

Consider a ring with N equidistant balls on it each colored either white or black.
Suppose that M < N of the edges connecting the balls contains a marker. In each second
the ring revolves one step counterclockwise taking each ball to the nearest site. When a
ball passes a marker, it changes color. (If there were only one marker randomly relocated
on the ring at each step, we would get back the dog-�ea model.)

The dynamics of the Kac ring is time-reversal invariant and has a Poincaré cycle of
length 2N since after 2N steps each ball returns to its initial state and passes each marker
twice.

Let Wt and Bt denote the number of white and black balls at time t, respectively. Let
the macrostate of the system be the di�erence

Gt := Wt −Bt (32)

of the number of the white and black balls (�greyness�). The system � similarly to the
dog-�ea model � has 2N microstates and N + 1 macrostates.

Let us see how the macrostate of the system evolves with time. Denote by W ∗
t and

B∗t the number of white and black balls in front of a marker at time t. Then the number
of the white and black balls changes from t to t+ 1 as follows:

Wt+1 = Wt −W ∗
t +B∗t (33)

Bt+1 = Bt −B∗t +W ∗
t (34)

and hence the macrostate evolves as

Gt+1 = Wt+1 −Bt+1 = Gt + 2W ∗
t − 2B∗t (35)

32. The Boltzmann approach. To solve (35) one can use two approaches called the
Boltzmann approach (master equation approach) and the Gibbs approach. Let is start
with the Boltzmann approach.
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To solve (35) one should know W ∗
t and B∗t at each t. Instead, however, let us make

the following assumption: the markers are randomly distributed on the ring. That is the
number of a white balls being in front of a marker is just the density of the markers on
the ring times the number of the white ball; and similarly for the black balls:

M

N
=
W ∗
t

Wt

=
B∗t
Bt

(36)

This assumption is analogue to Boltzmann's famous Stosszahlanzatz or molecular chaos
assumption. It states that the distribution of the markers across the balls of di�erent color
at time t is independent of what happened to the balls before t. It is as if the markers
were randomly reshu�ed on the ring before every step; as if we have N dog-�ea models
at each step. Obviously (36) cannot hold at each t but the hope is that it is a typical
behavior for large N .

Now, by means of (36) the equation (35) becomes

Gt+1 =

(
1− 2

M

N

)
Gt (37)

leading to the solution

Gt =

(
1− 2

M

N

)t
G0 (38)

As t tends to in�nity, Gt tends to zero showing that the number of the white and black
balls becomes equal on the long run.

But this cannot be right: At t = 2N the initial con�guration returns! A case for
Loschmidt's Reversibility objection.

33. The Gibbs approach. Let us see the process at the microlevel. First let us extend
the phase space to include also the di�erent distributions of the markers on the rings and
try to recover (38) as a statistical equation arising from a suitable probability distribution
on the distributions of the markers on the rings.

First, introduce the following two variables, one for the color of a given ball:

Ci, t =

{
1 if the ball at site i at time t is white
−1 if the ball at site i at time t is black

(39)

and one for whether there is a marker on a given edge of the ring:

Mi =

{
1 if there is a marker at the edge connecting site i and i+ 1
−1 if there is no marker at the edge connecting site i and i+ 1

(40)

Now, the one-step evolution of the system is

Ci+1, t+1 = MiCi,t (41)
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which leads to the following evolution of a given ball:

Ci, t = Mi−1Mi−2 . . .Mi−tCi−t,0 (42)

We obtain the macrostate Gt by adding up the balls:

Gt =
N∑
i=1

Ci, t =
N∑
i=1

Mi−1Mi−2 . . .Mi−tCi−t,0 (43)

Obviously, G2N = G0.
Now, consider 〈G〉t, the average of the di�erence G at time t over the di�erent distri-

butions of markers on the ring for a given initial con�guration {Ci,0} of the balls. 〈G〉t
can be written as follows:

〈G〉t =
N∑
i=1

〈Ci, t〉 =
N∑
i=1

〈Mi−1Mi−2 . . .Mi−t〉Ci−t,0 = 〈Mi−1Mi−2 . . .Mi−t〉G0 (44)

Suppose that the M markers are randomly placed on the N edges; that is they follow a
binomial distribution. Hence for t < N consecutive edges we have:

〈Mi−1Mi−2 . . .Mi−t〉 =
t∑

j=1

(−1)j
(
t

j

)(
M

N

)j (
1− M

N

)t−j
=

(
1− 2

M

N

)t
(45)

by which we get the statistical version of (38):

〈G〉t =

(
1− 2

M

N

)t
〈G〉0 (46)

Therefore the Stosszahlanzatz (36) can be related to an ensemble over distributions of
markers on the ring.

In what sense does the statistical equation (46) justify equation (38)? In the sense
of typicality. That is if the majority of the evolution of the individual systems remains
close to the average behavior of the ensemble. In other words, if the average is peaked.
However, the variance of the ensemble scales like N for the Kac ring, so the standard
deviation like

√
N as long as t is smaller than the half-recurrence time. This means that

for short time and large N , the average behaviour is typical.
The coarse-grained Boltzmann entropy of the Kac ring can be de�ned via the partition

function ZG :=
(
N
W

)
as

SB,c (ZG) = log(ZG) = −N [p log p+ (1− p) log(1− p)]

where p := W
N

and we used the Stirling formula. It is maximal for p = 1
2
. One can see

that the coarse-grained Boltzmann entropy is extensive (linear in N).
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Finally, let us compare the Boltzmann approach and the Liouville approach. In the
Boltzmann approach we (i) �rst take a system; (ii) apply the coarse-graining to get the
macrostates; (iii) let the system evolve macrodynamically; (iv) �nally force independence
of the subsystems in each step by demanding the Stosszahlanzatz. In the Liouville ap-
proach we (i) �rst take an ensemble of the systems; (ii) let them evolve microdynamically;
(iii) apply the coarse-graining to each to get the macrostates; and (iv) �nally calculate
the statistical averages. If the variance is small, the process can be regarded typical.

So in the two approaches coarse-graining and time evolution are swapped. Generally,
however, they do not commute!

Notes and further readings

A beautiful treatment of the Kac ring model can be found in (Gottwald and Oliver, 2009).
Kac' original paper is (Kac, 1956). See also (Brickmont, 1995).
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Appendix C: The wind-tree model

34. The wind-tree model is again a deterministic model introduced by the Ehrenfests
(1902). The model consists of a two dimensional gas with N particles (�wind�) and M
immobile scatterers (�trees�) in a container of area A. The particles can move in four
di�erent directions: East (1), North (2), West (3) and South (4). The scatterers are
square-shaped; their sides are of length a and make 45◦ with the above directions. Both the
particles and the scatterers are randomly distributed. The particles do not interact with
one another, but rebound from the scatterers elastically. By the collision the scatterers
remain una�ected.

Let fi(t) be the number of particles moving in direction i = 1, 2, 3, 4 at time t.
∑

i fi(t) =
N . Let Nij(∆t) denote the number of particles that due to a collision are scattered from
direction i to a neighboring direction j = i ± 1 (mod 4) between time t and t + ∆t.
Any such particle is in a parallelogram with base v∆t and height a/

√
2 attached to the

appropriate side of a scatterer. How many are they?
Suppose that the total area of the scatterers is very small compared to the total area

of the container, Ma2 � A. Again we apply an independence assumption analogous to
the Stosszahlanzatz :

Nij(∆t)

fi(t)
=
M a√

2
v∆t

A

That is at any moment the ratio of those particles that will be scattered from direction i
to direction j within the time interval ∆t relative to all particles traveling in direction i
is just the ratio of the total area of all the appropriate parallelograms to the area of the
container. From this we get that

Nij(∆t) =

(
M

A

a√
2
v

)
fi(t)∆t =: kfi(t)∆t

Hence, the balance equation reads as follows:

fi(t+ ∆t) = fi(t) +Ni,i+1(∆t) +Ni,i−1(∆t)−Ni+1,i(∆t)−Ni−1,i(∆t)

= fi(t) + k
(
fi+1(t) + fi−1(t)− 2fi(t)

)
∆t
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It can be shown that the H-function

H :=
∑
i

fi log fi

is monotonically decreasing until it reaches the minimum value at fi = N
4
.

Notes and further readings

The wind-tree model was also invented by the Ehrenfests (1907). See for example (Brown,
Myrword and U�nk, 2009).
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Appendix D: Questions

Pick one of the following questions and write a 1000 word discussion paper on it.

Q1. Where does coarse-graining come from? Limited capacity of the observer? Does
equilibrium make sense to creatures with unlimited capacity? Does coarse-graining
have any physical basis or it is plainly arbitrary?
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