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Propositions and Truth Values 

Propositional logic is a logic at the sentential level. The smallest unit we deal with in 

propositional logic is a sentence. We do not go inside individual sentences and analyze or 

discuss their meanings. We are going to be interested only in true or false of sentences, and 

major concern is whether or not the truth or falsehood of a certain sentence follows from 

those of a set of sentences, and if so, how. Thus sentences considered in this logic are not 

arbitrary sentences but are the ones that are true or false. This kind of sentences are called 

propositions. 

Propositions are either true or false, but not both. This is the princple of bivalence: any 

proposition must take exactly one (and neither more nor less) of the two possible truth values. 

If a proposition is true, then we say it has a truth value of "true"; if a proposition is false, its 

truth value is "false".  

For example, "Grass is green", and "2 + 5 = 5" are propositions.  The first proposition has the 

truth value of "true" and the second "false". But "Close the door", and "Is it hot outside ?"are 

not propositions.  

There are non-classical logical systems where the principle of bivalence does not hold, 

because some of the propositions does not take any of the truth values 'true' or 'false', or 

because other truth values are considered. However, we will make the simplest and most 

intuitive assumption that propositions are either true or false. 

 

Propositions and Connectives 
 

The simplest sentences which are true or false are basic – in other words, atomic – 

propositions. Larger and more complex sentences are constructed from basic propositions by 

combining them with connectives. Thus propositions and connectives are the basic elements 

of propositional logic. Though there are many connectives, we are going to use the following 

five basic connectives here:  

   

        NOT,  AND,  OR,  IF_THEN (or IMPLY),  IF_AND_ONLY_IF.  

They are also denoted by the symbols:  

 

      ~ , & , v ,  ,  ,  

respectively.  

Often we want to discuss properties/relations common to all propositions. In such a case 

rather than stating them for each individual proposition we use variables representing an 

arbitrary proposition and state properties/relations in terms of those variables. Those variables 

are called a propositional variable. Propositional variables are also considered a 

proposition and called a proposition since they represent a proposition hence they behave 

the same way as propositions. A proposition in general contains a number of variables. For 



example (P v Q) contains variables P and Q each of which represents an arbitrary proposition. 

Thus a proposition takes different values depending on the values of the constituent variables. 

This relationship of the value of a proposition and those of its constituent variables can be 

represented by a table. It tabulates the value of a proposition for all possible values of its 

variables and it is called a truth table. 

Let us define the meaning of the five connectives by showing the relationship between the 

truth value (i.e. true or false) of composite propositions and those of their component 

propositions. They are going to be shown using truth table. In the tables P and Q represent 

arbitrary propositions, and true and false are represented by T and F, respectively.  

 

This table shows that if P is true, then (~P) is false, and that if P is false, then (~P) is 

true.  

 

 

 

This table shows that (P & Q) is true if both P and Q are true, and that it is false 

in any other case. 

 

 

 

 

  

Similarly for the rest of the tables. 

 

 

 

 

 

 

 

 

 

 

 

 

NOT 

P  ~P 

T  F 

F  T 

AND 

P  Q (P &Q)  

F  F F  

F  T F  

T  F F  

T  T T  

OR 

P  Q (P v Q)  

F  F F  

F  T T  

T  F T  

T  T T  

IMPLIES 

P  Q (P  Q)  

F  F T  

F  T T  

T  F F  

T  T T  



 

 

 

 

 

Notes on IMPLY 

Note 1  

(P  Q) is True whenever P is False as well as when both P and Q are True. This might be 

counterintuitive for some people and might be a little difficult to be convinced of. What we 

are concerned about here is True or False of the statement (P  Q). You might also look at it 

this way. We are interested in whether or not the person who made this satement is lying. If 

the statement is False, then that person is lying. For example consider this sentence:  

You get ten thousand dollars from me if I win one million dollars in a lottery.  

Here P is "I win one million dollars in a lottery" and Q is "You get ten thousand dollars from 

me".  

If I don't win the lottery (P is False), I don't have to give you ten thousand dollars (Q is False). 

My statement (P  Q) is still true if you don't get the money from me when I don't win. I 

haven't lied to you. This is what "(P  Q) is True when P is False" means. Similarly for when 

P and Q are False. On the other hand, if I did win the the lottery and did not give you $10,000, 

then I have lied to you, that is the statement "You get ten thousand dollars from me if I win 

one million dollars in a lottery" is not true. That is what "(P  Q) is False if P is True and Q is 

False" means.  

Note 2  

In "If P then Q", P and Q are arbitrary propositions. We are interested in only true or false of 

(P  Q) vis-a-vis true or false of P and Q. Thus P and Q may be completely unrelated 

sentences such as in " If 3 > 1, then ODU is in Norfolk, VA." This proposition is true since 

both "3 > 1" and "ODU is in Norfolk, VA" are true. As an English sentence this if-then 

statement is meaningless. However, as a proposition it is legitimate.  

Note 3 

If-then statements appear in various forms in practice. The following list presents some of the 

variations. These are all logically equivalent, that is as far as true or false of statement is 

concerned there is no difference between them. Thus if one is true then all the others are also 

true, and if one is false all the others are false.  

 If p , then q. 

 p implies q. 

IF AND ONLY IF 

  P    Q    ( P  Q )  

  F    F T  

  F    T F  

  T    F F  

  T    T T  



 If p,   q. 

 p only if q.  

 p is sufficient for q. 

 q if p. 

 q whenever p. 

 q is necessary for p. 

 It is necessary for p that q.  

For instance, instead of saying "If she smiles then she is happy", we can say "If she smiles, 

she is happy", "She is happy whenever she smiles", "She smiles only if she is happy" etc. 

without changing their truth values.  

 

"Only if" can be translated as "then". For example, "She smiles only if she is happy" is 

equivalent to "If she smiles, then she is happy".  Note that "She smiles only if she is happy" 

means "If she is not happy, she does not smile", which is the contrapositive of "If she smiles, 

she is happy". You can also look at it this way: "She smiles only if she is happy" means "She 

smiles only when she is happy". So any time you see her smile you know she is happy. Hence 

"If she smiles, then she is happy". Thus they are logically equivalent.  

 

Also "If she smiles, she is happy" is equivalent to "It is necessary for her to smile that 

she is happy". For "If she smiles, she is happy" means "If she smiles, she is always happy". 

That is, she never fails to be happy when she smiles. "Being happy" is inevitable 

consequence/necessity of "smile". Thus if "being happy" is missing, then "smile" can not be 

there either. "Being happy" is necessary "for her to smile" or equivalently "It is necessary for 

her to smile that she is happy". 

 

Syntax of propositions  

First it is informally shown how complex propositions are constructed from simple ones. 

Then more general way of constructing propositions is given.  

 

In everyday life we often combine propositions to form more complex propositions without 

paying much attention to them. For example combining "Grass is green", and "The sun is red" 

we say something like "Grass is green and the sun is red", "If the sun is red, grass is green", 

"The sun is red and the grass is not green" etc. Here "Grass is green", and "The sun is red" are 

propositions, and form them using connectives "and", "if... then ..." and "not" a little more 

complex propositions are formed. These new propositions can in turn be combined with other 

propositions to construct more complex propositions. They then can be combined to form 

even more complex propositions. This process of obtaining more and more complex 

propositions can be described more generally as follows:  

 

Let X and Y represent arbitrary propositions. Then  

(~X),   (X & Y),  (X v Y),   (X  Y),   and   (X   Y)  

are propositions.  
 

Note that X and Y here represent an arbitrary proposition.  

  

 



Example : (P  (Q v R)) is a proposition and it is obtained by first constructing (Q v R) by 

applying (X v Y) to propositions Q and R considering them as X and Y, respectively, then by 

applying (X  Y) to the two propositions P and (Q v R) considering them as X and Y, 

respectively.  

 

Note 1: Rigorously speaking X and Y above are place holders for propositions, and so they 

are not exactly a proposition. They are called a propositional variable, and propositions 

formed from them using connectives are called a propositional form. However, we are not 

going to distinguish them here, and both specific propositions such as "2 is greater than 1" and 

propositional forms such as (P v Q) are going to be called a proposition.  

To convert English statements into a symbolic form, we restate the given statements 

using the building block sentences, those for which symbols are given, and the 

connectives of propositional logic (not, and, or, if_then, if_and_only_if), and then 

substitute the symbols for the building blocks and the connectives.  

For example, let P be the proposition "It is snowing", Q be the proposition "I will go the 

beach", and R be the proposition "I have time". Then first "I will go to the beach if it is not 

snowing" is restated as "If it is not snowing, I will go to the beach". Then symbols P and Q 

are substituted for the respective sentences to obtain ((~P)  Q). Similarly, "It is not snowing 

and I have time only if I will go to the beach" is restated as "If it is not snowing and I have 

time, then I will go to the beach", and it is translated as (((~P) & R )  Q). 

 

Note 2: Although the above syntactical rules are srtict with regards to using parentheses, we 

will be more generous in using them where it is intuitively possible. We will omit the outmost 

parentheses: instead of "(~P)" we will write "~P", instead of "(P & Q)" we write "P & Q" We 

use the parentheses only when the connected proposition is not atomic: "P & Q" negated is  

"~(P & Q)", etc. 

 

 

Types of Proposition 

Some propositions are always true regardless of the truth value of its component propositions.  

For example  P v ~P  is always true regardless of the value of the proposition P.  

A proposition that is always true called a tautology. 

There are also propositions that are always false such as  P & ~P.  

Such a proposition is called a contradiction.  

A proposition that is neither a tautology nor a contradiction is called a contingency.  

For example  P v Q  is a contingency. It can be true as well as false. 

Whether a contingency is true or false depends on the fact or state of affairs it is meant to 

describe. In other words its truth value depends on the world. On the other hand, the truth 

value of a contradiction, or of a tautology, does not depend on the world external to the 

language, but on the syntactical properties of the language. In a strict sense these propositions 

do not tell us anything: they have no information content. 

With the help pf truth tables we can see whether a proposition is a tautology or a contradiction 

or a contingency. For example, P  (Q  P)  is shown to be a tautology: 



 

In order to see the truth values of  P  (Q  P) , we first have to 

see the truth value of its components (P   – first column, Q  P   – 

third column). By definition of the meaning of 'imply',  P  (Q  

P)  is False if and only if  P  is True and  Q  P  is false. Since 

there is no such case it is True everywhere. 

A tautology gives the value True in all the rows of its truth table. A contradiction gives the 

value False in all the rows of its truth table. Consequently, the negation of a tautology is a 

contradiction, and vice versa. A contingency has both True and False outputs in its truth table. 

 

Identities 

From the definitions (meaning) of connectives, a number of relations between propositions 

which are useful in reasoning can be derived. Below some of the often encountered pairs of 

logically equivalent propositions, also called identities, are listed.  

These identities are used in logical reasoning. In fact we use them in our daily life, often more 

than one at a time, without realizing it.  

If two propositions are logically equivalent, one can be substituted for the other in any 

proposition in which they occur without changing the logical value of the proposition.  

Below  ""   means that the propositions on the two sides are always true together or false 

together, i.e. they have the same truth value in all circumstances. Such propositions are 

identical in the logical sense. 

 

1. P    P v P    – idempotence of v 

2. P    P & P    – idempotence of & 

3. P v Q    Q v P   – commutativity of v 

4. P & Q    Q & P   – commutativity of & 

5. P v (Q v R)    (P v Q) v R  – associativity of v 

6. P & (Q & R)    (P & Q) & R – associativity of & 

7. ~(P v Q)    ~P & ~Q  – DeMorgan’s Law 

8. ~(P & Q)    ~P v ~Q  – DeMorgan’s Law 

9. P & (Q v R)    (P & Q) v (P & R) – distributivity of & over v 

10. P v (Q & R)    (P v Q) & (P v R) – distributivity of v over & 

11. P    ~(~P)    – double negation 

12. P  Q  ~P v Q   – implication 

13. P  Q    (P  Q) & (Q  P) – biconditional 

14. (P & Q)  R    P  (Q  R) – exportation 

15. ((P  Q) & (P  ~Q))    ~P – absurdity 

16. (P  Q)    (~Q  ~P)  – contrapositive 

 

All the equvalences can be proven to hold using truth tables as follows. In general two 

propositions are logically equivalent if they take the same value for each set of values of their 

variables. Thus to see whether or not two propositions are equivalent, we construct truth 

P  Q Q  P  P  (Q  P) 

F  F T  T 

F  T F  T 

T  F T  T 

T  T T  T 



tables for them and compare to see whether or not they take the same value for each set of 

values of their variables.  

 

For example consider the commutativity of v: P v Q    Q v P 

 

To prove that this equivalence holds, let us construct a truth table for each of the proposition  

P v Q  and  Q v P 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

As we can see from these tables P v Q  and  Q v P take the same value for the same set of 

values of P and Q. Thus they are (logically) equivalent. 

 

 

Let us see some example statements in English that illustrate these equvalences.  

 

Examples: 

 

1. What this says is, for example, that "Tom is happy." is equivalent to "Tom is happy or 

Tom is happy". This and the next identity are rarely used, if ever, in everyday life. 

However, these are useful when manipulating propositions in reasoning in symbolic form. 

2. Similar to 1. above. 

3. What this says is, for example, that "Tom is rich or (Tom is) famous." is equivalent to 

"Tom is famous or (Tom is) rich". 

4. What this says is, for example, that "Tom is rich and (Tom is) famous." is equivalent to 

"Tom is famous and (Tom is) rich". 

5. What this says is, for example, that "Tom is rich or (Tom is) famous, or he is also happy." 

is equivalent to "Tom is rich, or he is also famous or (he is) happy". 

6. Similar to 5. above. 

7. For example, "It is not the case that Tom is rich or famous." is true if and only if "Tom is 

not rich and he is not famous." 

8. For example, "It is not the case that Tom is rich and famous." is true if and only if "Tom is 

not rich or he is not famous." 

9. What this says is, for example, that "Tom is rich, and he is famous or (he is) happy." is 

equivalent to "Tom is rich and (he is) famous, or Tom is rich and (he is) happy". 

P  Q P v Q  

F  F F  

F  T T  

T  F T  

T  T T  

P  Q Q v P  

F  F F  

F  T T  

T  F T  

T  T T  



10. Similarly to 9. above, what this says is, for example, that "Tom is rich, or he is famous 

and (he is) happy." is equivalent to "Tom is rich or (he is) famous, and Tom is rich or (he 

is) happy". 

11. What this says is, for example, that "It is not the case that Tom is not 6 foot tall." is 

equivalent to "Tom is 6 foot tall." 

12. For example, the statement "If I win the lottery, I will give you a million dollars." is not 

true, that is, I am lying, if I win the lottery and don't give you a million dollars. It is true in 

all the other cases. Similarly, the statement "I don't win the lottery or I give you a million 

dollars." is false, if I win the lottery and don't give you a million dollars. It is true in all the 

other cases. Thus these two statements are logically equivalent. 

13. What this says is, for example, that "Tom is happy if and only if he is healthy." is logically 

equivalent to ""if Tom is happy then he is healthy, and if Tom is healthy he is happy." 

14. For example, "If Tom is healthy, then if he is rich, then he is happy." is logically 

equivalent to "If Tom is healthy and rich, then he is happy." 

15. For example, if "If Tom is guilty then he must have been in that room." and "If Tom is 

guilty then he could not have been in that room." are both true, then there must be 

something wrong about the assumption that Tom is guilty. 

16. For example, "If Tom is healthy, then he is happy." is logically equivalent to "If Tom is 

not happy, he is not healthy." 

 

 

 

Here an example is presented to show how the equvalences can be used to prove some useful 

results. 

 

 ~(P  Q)  P & ~Q 

 

What this means is that the negation of "if P then Q" is "P but not Q". For example, if you 

said to someone "If I win a lottery, I will give you $100,000." and later that person says "You 

lied to me." Then what that person means is that you won the lottery but you did not give that 

person $100,000 you promised.  

 

To prove this, first let us get rid of   using one of the identities: P  Q  ~P v Q 

That is, ~(P  Q)  ~(~P v Q) 

Then by De Morgan, it is equivalent to ~(~P) & ~Q, which is equivalent to P & ~Q, since the 

double negation of a proposition is equivalent to the original proposition as seen in the 

identities. 

 

 

Implications 
 

The following implications are some of the relationships between propositions that can be 

derived from the definitions(meaning) of connectives. ""  below means that if  the 

proposition on the left is true, then the one on the right must also be true. 

These implications are used in logical reasoning. When the right hand side of these 

implications is substituted for the left hand side appearing in a proposition, the resulting 

proposition is implied by the original proposition, that is, one can deduce the new proposition 

from the original one. 



First some implications are listed, then examples to illustrate them are given.  

 

List of Implications:   

1. P    P v Q    – addition 

2. P & Q    P    – simplification 

3. P & (P  Q)    Q   – modus ponens 

4. ~Q & (P  Q)    ~P   – modus tollens 

5. ~P & (P v Q)    Q   – disjunctive syllogism 

6. (P  Q) & (Q  R)    P  R  – hypothetical syllogism 

Examples: 

1. For example, if the sun is shining, then certainly the sun is shining or it is snowing. Thus 

"if the sun is shining, then the sun is shining or it is snowing." "If 0 < 1, then 0  1 or a 

similar statement is also often seen. 

2. For example, if it is freezing and (it is) snowing, then certainly it is freezing. Thus "If it is 

freezing and (it is) snowing, then it is freezing." 

3. For example, if the statement "If it snows, the schools are closed" is true and it actually 

snows, then the schools are closed.  

This implication is the basis of all reasoning. Theoretically, this is all that is necessary for 

reasoning. But reasoning using only this becomes very tedious. 

4. For example, if the statement "If it snows, the schools are closed" is true and the schools 

are not closed, then one can conclude that it is not snowing.  

Note that this can also be looked at as the application of the contrapositive and modus 

ponens. That is, P  Q  is equivalent to  ~Q  ~P. Thus if in addition ~Q holds, then by 

the modus ponens, ~P is concluded. 

5. For example, if the statement "It snows or (it) rains." is true and it does not snow, then one 

can conclude that it rains. 

6. For example, if the statements "If the streets are slippery, the school buses can not be 

operated." and "If the school buses can not be operated, the schools are closed." are true, 

then the statement "If the streets are slippery, the schools are closed." is also true. 

All implications can be shown valid or invalid by using truth tables. Examples: 

 P & (P  Q)    Q 

 

The implication says that if  P & (P  Q)  is true, then  Q  is also 

true. The truth table shows that  P & (P  Q)  is true in only one 

case, but in that case  Q  is also true. So the implication us valid. 

 

 

 

P  Q P  Q  P & (P  Q) 

F  F T  F 

F  T T  F 

T  F F  F 

T  T T  T 



Let’s see a bit more difficult example: 

(P  Q) & (Q  R)    P  R 

 

 

 

 

 

 

 

Here the truth table has 8 rows because the truth values of  P, Q and R can be combined in 8 

different ways. The values for P  Q , Q  R  and  P  R  can be writen from the values of P, 

Q and R  by using the definition of 'implies', while the truth values of  (P  Q) & (Q  R)  

can be written from the values of  P  Q  and  Q  R  by using the definition of 'and'. We see 

that in any case when  (P  Q) & (Q  R)  is true (rows 1, 2, 4, 8),  P  R  is also true. In 

other words, there is no such case when  (P  Q) & (Q  R)  is true and  P  R  is false. Note 

that the definition does not care about the truth value of  P  R  when  (P  Q) & (Q  R)  is 

false: then it can both be true (rows 3, 6) and be false (rows 5, 7). The only thing we want to 

know is that when the left hand proposition is true, then the right hand one is also true, in this 

order. 

 

Inferences 

An inference is a relation between a set of propositions (premises) and a proposition 

(conclusion). An inference is valid when the following relation between the truth values 

holds: if all the premises are true, then the conclusion is also true. In other words, it is 

impossible for the premises to be true and for the coclusion to be false at the same time. This 

is how we ensure that the truth of the conclusion follows from the truth of the premises. 

A valid inference is written in the following way: 

P, Q, R    C , 

where P, Q and R are the premises and C is the conclusion. 

Note that the sign  ''  here is the same as in implications. An implication is an inference with 

one premise (see their definitions). Of course, there can be more than one premise in an 

inference: as many as you want.  

P  Q R P  Q  Q  R (P  Q) & (Q  R) P  R 

F  F F T  T T T 

F  F T T  T T T 

F  T F T  F F T 

F T T T  T T T 

T F F F T F F 

T F T F T F T 

T T F T F F F 

T T T T T T T 



Technically speaking, the minimal number of premises you need for a valid inference is zero. 

Any tautology can be seen as the conclusion of an inference from zero premises. It is because 

in case of a tautology, for any set of premises it is impossible for them to be true and the 

tautology to be false simultanously, since the teutology itself can never be false. Thus the set 

of premises can be anything, even an empty set. For this reason, tautologies are often 

indicated in this way: 

  P  P , 

showing that such a proposition follows from any premises whatsoever. 

The validity of inferences in propositional logic can be checked by using truth tables. For 

example: 

1. P  Q, P  Q 

P Q P  Q  

T T T  

T F F  

F T T  

F F T  

What we have to see if the following condition of valid inference holds: if the premises are 

true, then the conclusion must also be true. The premises are P and P  Q (see first and third 

columns). There is only one case when both are true (see first row), but then the conclusion 

(second column) is also true. Therefore the inference is valid. 

For the same reason, the following is invalid: 

2. P  Q, Q  P 

P Q P  Q  

t t T  

t f F  

f t T  

f f T  

The premises (second and third columns) are both true in two cases (first and third rows). Out 

of these, the conclusion (first column) is true in the first row BUT false in the third. So it does 

not hold that if the premises are true, then the conclusion must also be true. 

 

Reasoning with Propositions 

Logical reasoning is the process of drawing conclusions from premises using rules of 

inference. The basic inference rule is modus ponens. It states that if both P  Q and P hold, 

then Q can be concluded, and it is written as  



P 

P  Q 

Q 

Here the propositions above the line are premises and the line below it is the conclusion 

drawn from the premises. For example if "if it rains, then the game is not played" and "it 

rains" are both true, then we can conclude that the game is not played. 

Example of Inferencing  

Consider the following argument:  

1. Today is Tuesday or Wednesday.  

2. But it can't be Wednesday, since the doctor's office is open today, and that office is always 

closed on Wednesdays.  

3. Therefore today must be Tuesday.  

This sequence of reasoning (inferencing) can be represented as a series of application of 

modus ponens to the corresponding propositions as follows.  

The modus ponens is an inference rule which deduces  Q  from  P  Q  and  P.  

T: Today is Tuesday.  

W: Today is Wednesday.  

D: The doctor's office is open today.  

C: The doctor's office is always closed on Wednesdays.  

The above reasoning can be represented by propositions as follows.  

1. T v W  

 

2. D  
    C  

------------  
   ~W  

------------  

3. T  

To see if this conclusion T is correct, let us first find the relationship among C, D, and W:  

C can be expressed using D and W. That is, restate C first as the doctor's office is always 

closed if it is Wednesday. Then C  (W  ~D) Thus substituting (W  ~D) for C, we can 

proceed as follows.  



D  

W  ~D 
------------  

~W 
 

which is correct by modus tollens. From this  ~W  combined with  T v W  of 1. above,  

 

~W 
T v W  

------------  

T  
 

which is correct by disjunctive syllogism. Thus we can conclude that the given argument is 

correct.  

To save space we also write this process as follows eliminating one of the ~W's:  

D  

W  ~D 
------------  

~W 
T v W  

------------  

T  
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Introduction to Predicate Logic 
 

The propositional logic is not powerful enough to represent all types of assertions that are 

used in everyday language, or to express certain types of relationship between propositions 

such as equivalence. The pattern involved in the following logical equivalences can not be 

captured by the propositional logic:  

 

"Not all birds fly" is equivalent to "Some birds don't fly".  

"Not all integers are even" is equivalent to "Some integers are not even".  

"Not all cars are expensive" is equivalent to "Some cars are not expensive",  

  

Each of those propositions is treated independently of the others in propositional logic. For 

example, if P represents "Not all birds fly" and Q represents "Some integers are not even", 

then there is no mechanism in propositional logic to find out tha P is equivalent to Q. Hence 

to be used in inferencing, each of these equivalences must be listed individually rather than 

dealing with a general formula that covers all these equivalences collectively and instantiating 

it as they become necessary, if only propositional logic is used.  

 

Thus we need more powerful logic to deal with these and other problems. The predicate logic 

is one of such logic and it addresses these issues among others. 

 

To cope with deficiencies of propositional logic we introduce two new features: predicates 

and quantifiers.  

 

Predicates 

A predicate is a verb phrase template that describes a property of objects, or a relationship 

among objects represented by the variables.  

For example, the sentences "The car Tom is driving is blue", "The sky is blue", and "The 

cover of this book is blue" come from the template "is blue" by placing an appropriate 

noun/noun phrase in front of it. The phrase "is blue" is a predicate and it describes the 

property of being blue. Predicates are often given a name. For example any of "is_blue", 

"Blue" or "B" can be used to represent the predicate "is blue" among others. If we adopt B as 

the name for the predicate "is_blue", sentences that assert an object is blue can be represented 

as "B(x)", where x represents an arbitrary object. B(x) reads as "x is blue".  

 

Similarly the sentences "John gives the book to Mary", "Jim gives a loaf of bread to Tom", 

and "Jane gives a lecture to Mary" are obtained by substituting an appropriate object for 

variables x, y, and z in the sentence "x gives y to z". The template "... gives ... to ..." is a 

predicate and it describes a relationship among three objects. This predicate can be 

represented by Give(x, y, z) or G(x, y, z), for example.  

 

Note: The sentence "John gives the book to Mary" can also be represented by another 

predicate such as "gives a book to". Thus if we use B( x, y ) to denote this predicate, "John 



gives the book to Mary" becomes B( John, Mary ). In that case, the other sentences, "Jim 

gives a loaf of bread to Tom", and "Jane gives a lecture to Mary", must be expressed with 

other predicates.  

In the followings, predicates will be denoted by upper case letters (A, B, C,…). After these 

letters we put the so-called argument(s) of the predicate in parentheses, denoted by lower case 

letters (a, b, c, …). Thus the sentence "Many is happy" will be written as  H(m). 

 

Sentences such as above are, like the propositions of propositional logic, either true or false. 

However, we will not call them propositions because, in the symbolic language of predicate 

logic, we express their internal logical structure, contrary to what we did in propositional 

logic. The sentences formalized in the language of predicate logic will be called formulas. 

 

H(x)  expressing  that "x is happy" does not have a truth value, since x represents an arbitrary 

object. Thus we have two types of signs which can be written as arguments of predicates: 

 the so-called names or terms: a, b, c…  – always represent a concrete person or object 

 the so-called variables: x, y, z,…  – always represents an arbitrary object. 

 

A predicate filled with the necessary number of names gives a formula. It has a truth value of 

its own, therefore it is called a closed formula. On the other hand, a predicate filled with  

insufficient number of names and with variables for the lack of names is an open formula. 

Open formulas (such as F(x), G(a, x), H(x, y) etc.) have no truth values. For example, 

"2+4=6" is a tue sentence, while "2+4=x" is neither true nor false. 

 

Note: Names do not have to be proper names such as John. Any expression successfully 

identifying a single person or object is a name in the logical sense. For example, instead of 

'Julius Caesar' you can say 'Brutus’ father', instead of 'London' you can say 'the capital of 

Britain', instead of '6' you can say '2+4', etc. 

 

 

Formulas with Predicates 
 

When you have a predicate filled with the appropriate number of names or variables, you 

have a formula. Of course, such formulas can be taken as abbriviated by atomic propositions 

in propositional logic. The connectives of propositional logic can be used to connect formulas 

of predicate logic as well. Thus "If John is rich than Mary is happy" can be written as: 

 

R(j)  H(m) 

 

where R and H are predicates (rich, happy), and j and m are names (John, Mary). 

 

The rules for building formulas are: 

 

 If A is a 1-place predicate and a is a name, x is a variable, then A(a) is a formula and 

A(x) is a formula. Similarly, if B is a 2-place predicate and a, b are names, x, y are 

variables, then B(a, b), B (x, y), B(a, x) etc. are formulas. Etc. 

 If  X, Y are formulas, then  ~X, X  Y, X v Y, X & Y, X  Y  are also formulas. 

 



Quantification 
 

An open formula has no truth value. In everyday language we don’t really use open formulas. 

But in predicate logic, they enable us to express true or false sentences about, not concrete 

objects, but classes of objects. For this, we need as new tools the so-called quantifiers. 

 

The Universal Quantifier 

The expression: x P(x), denotes the universal quantification of the atomic formula P(x). 

Translated into the English language, the expression is understood as: "For all x, P(x) holds", 

"for each x, P(x) holds" or "for every x, P(x) holds".  is called the universal quantifier, and 

x means all the objects x in the universe. If this is followed by P(x) then the meaning is that 

P(x) is true for every object x in the universe. For example, "All cars have wheels" could be 

transformed into the propositional form, x P(x), where:  

 P(x) is the predicate denoting: x has wheels, and  

 the universe of discourse is only populated by cars.  

Note: The universe of discourse, also called universe, is the set of objects of interest. The 

propositions in the predicate logic are statements on objects of a universe. The universe is 

thus the domain of the (individual) variables. It can be the set of real numbers, the set of 

integers, the set of all cars on a parking lot, the set of all students in a classroom etc. The 

universe is often left implicit in practice. But it should be obvious from the context. 

 

Universal Quantifier and Connective AND  

If all the elements in the universe of discourse can be listed then the universal quantification 

x P(x) is equivalent to the conjunction: P(x1) & P(x2) & P(x3) &... &P(xn) .  

For example, in the above example of x P(x), if we knew that there were only 4 cars in our 

universe of discourse (c1, c2, c3 and c4) then we could also translate the statement as:  

P(c1) & P(c2) & P(c3) & P(c4). 

 

The Existential Quantifier 

The expression xP(x) denotes the existential quantification of P(x). Translated into the 

English language, the expression could also be understood as: "There exists an x such that 

P(x)" or "There is at least one x such that P(x)".  is called the existential quantifier, and x 

means at least one object x in the universe. If this is followed by P(x) then the meaning is that 

P(x) is true for at least one object x of the universe. For example, "Someone loves you" could 

be transformed into the propositional form xP(x), where:  

 P(x) is the predicate meaning: x loves you,  

 The universe of discourse contains (but is not limited to) all living creatures.  

Existential Quantifier and Connective OR  

If all the elements in the universe of discourse can be listed, then the existential quantification 

xP(x) is equivalent to the disjunction: P(x1) v P(x2) v P(x3) v… v P(xn). 

For example, in the above example of xP(x), if we knew that there were only 5 living 



creatures in our universe of discourse (say: me, he, she, rex and fluff), then we could also 

write the statement as: P(me) v P(he) v P(she) v P(rex) v P(fluff). 

How to read quantified formulas 

When reading quantified formulas in English, read them from left to right. x can be read 

as "for every object x in the universe the following holds" and x can be read as "there erxists 

an object x in the universe which satisfies the following" or "for some object x in the universe 

the following holds". Those do not necessarily give us good English expressions. But they are 

where we can start. Get the correct reading first then polish your English without changing the 

truth values. 

For example, let the universe be the set of airplanes and let F(x, y) denote "x flies faster than 

y". Then 

 xyF(x, y)  can be translated initially as "For every airplane x the following holds: x 

is faster than every (any) airplane y". In simpler English it means "Every airplane is 

faster than every airplane (including itself !)". 

 xyF(x, y)  can be read initially as "For every airplane x the following holds: for 

some airplane y, x is faster than y". In simpler English it means "Every airplane is 

faster than some airplane". 

 xyF(x, y)  represents "There exist an airplane x which satisfies the following: (or 

such that) for every airplane y, x is faster than y". In simpler English it says "There is 

an airplane which is faster than every airplane" or "Some airplane is faster than every 

airplane". 

 xyF(x, y)  reads "For some airplane x there exists an airplane y such that x is faster 

than y", which means "Some airplane is faster than some airplane". 

 

When more than one variables are quantified in a formula such as  xyF(x, y) , they are 

applied from the inside, that is, the one closest to the atomic formula is applied first. Thus 

xyF(x, y)  reads  x ( yF(x, y) ) , and we say " for every x there exists an y such that   

F(x, y) holds".  

 

The positions of the same type of quantifiers can be switched without affecting the truth value 

as long as there are no quantifiers of the other type between the ones to be interchanged. Thus 

xyF(x, y)    yxF(x, y)    and 

xyF(x, y)    yxF(x, y) 

 

However, the positions of different types of quantifiers can not be switched. For example  

xyF(x, y)  is not equivalent to  yxF(x, y) . For let F(x, y) represent x < y for the set of 

numbers as the universe, for example. Then  xyF(x, y)  reads "for every number x, there is 

a number y that is greater than x", which is true, while  yxF(x, y)  reads "there is a number 

that is greater than every (any) number", which is not true. 

 

 

 

 

 

 



Formulas with Quantifiers 

 
Now we have one more rule for building formulas, which must be added to the previous ones: 

 

 If X is a formula and x is a variable, then xX  and  xX are also formulas. 

 

Technically speaking, it does not matter whether or not the quantified formula is closed, i.e. if 

it contains variables. But for the purposes of translating everyday language sentences to 

predicate logic formulas, we meet only such cases where the variable following the quantifier 

occurs in the quantified formula. For example, it is meaningful to say that "For every x, x is 

greater than zero", while it is without meaning to say that "For every x, one is greater than 

zero". 

 

 

Categorical Formulas 
 

The most ancient logical theory, developed by Aristotle in the 4th century BC, was about the 

so-called categorical sentences. The four types were: 

 

 Universal assertive: 'All philosophers are wise' 

 Particular assertive: 'Some philosophers are wise' 

 Universal negative: 'No philosophers are wise' 

 Particular negative: 'Some philosophers are not wise' 

 

How do we represent these sentences in predicate logic? One solution is to write them as: 

 

xW(x) , xW(x) , x~W(x) , x~W(x) , 

 

and add that the universe is the set of all philosophers. However, sometimes it is impossible to 

adjust the universe to the domain of quantification, like in this case: 'All philosophers are wise 

and all politicians are liars' – here the universe should change between the two parts of the 

compound assertion  xW(x) & xL(x) and it is not allowed by the rules of logic. Instead, we 

have to express with the syntactical structure of the formula that 'wise' refers to philosophers 

and 'liars' refers to politicians. 

 

In predicate logic, 'wise' is represented with a one-place predicate and 'philosopher' with 

another one-place predicate: W(x) , P(x). Since predicates filled with their arguments are 

formulas, we guess that there will be a connective between there formulas. Which one? The 

sentence 'All philosophers are wise' can be expressed in this way: 'if someone is a philosopher 

then s/he is wise' –   P(x)  W(x) . Using the universal quantifier we can express that this 

assertion is true to every x: 

 

x(P(x)  W(x)) 

 

Now we don’t have to speak about the universe, and the sentence 'All philosophers are wise 

and all politicians are liars' can be translated as  x(P(x)  W(x)) & x(Po(x)  L(x)) . 

 



The sentence 'Some philosophers are wise' makes another connection between P(x) and W(x). 

It says that 'There are some who are (both) philosophers and wise' , so both the quantifier and 

the connective are different: 

 

x(P(x) & W(x)) 

 

The sentecne saying that 'No philosophers are wise' translates as 'if someone is a philsosopher 

then s/he is not wise: x(P(x)  ~W(x)) , while the sentecne 'Some philosophers are not wise' 

is written as  x(P(x) & ~W(x)). 

 

To sum up, the basic types of categorical propositions can be formalized in the following 

forms: 

 

 Universal assertive: x(A(x)  B(x)) 

 Particular assertive: x(A(x) & B(x)) 

 Universal negative: x(A(x)  ~B(x)) 

 Particular negative: x(A(x) & ~B(x)) 

 

 

Identities of Quantified Formulas 
 

What about the negation of quantified formulas? For example, to say that "there is no such 

thing as an orc" is equivalent with the statement that "for every thing in the world, it is not an 

orc". With formulas:   

 

~xO(x)    x~O(x) .  

 

In other words, the negation of an existentially quantified formula is equivalent to the 

universal quantification of the negated formula.  

 

On the other hand, the sentence "not everything is material" seems to mean the same as 

"something is not material":  

 

~xM(x)    x~M(x) .  

 

The negation of a universially quantified formula is equivalent to the existential quantification 

of the negated formula. 

 

Using the rules of duble negation we can also write: 

 

xO(x)    ~x~O(x) ("There are orcs" – "Not everything is not an orc") 

xM(x)    ~x~M(x) ("Everything is material" – "Nothing is not material") 

 

 

Identities of Categorical Formulas 
 

In case of a universially assertive formula, we can write the above idenity as 

 



x(A(x)  B(x))    ~x~(A(x)  B(x)). 

 

Using one of the identities of propositional logic:  ~(P  Q)    P & ~Q , 

we can write the right side this identity in this way: 

 

1.   x(A(x)  B(x))    ~x(A(x) & ~B(x)) 

 

Similarly, by using the above identities and the identities of propsitional logic, we can come 

to the following identities: 

 

2.   x(A(x) & B(x))    ~x(A(x)  ~B(x)) 

3.   ~x(A(x)  B(x))    x(A(x) & ~B(x)) 

4.   ~x(A(x) & B(x))    x(A(x)  ~B(x)) 

 

Examples: 

 

1. "Every philosopher is wise" is the same as "These is no philosopher who is not wise". 

2. "Some politicians are liars" is the same as "Not every politician is not a liar". 

3. "Not all hobbits are coward" is the same as "Some hobbits are not coward". 

4. "There is no handsome orc" is the same as "All orcs are not hadsome". 

 

 

Categorical Formulas and Venn Diagrams 
 

Note that these categorical sentences can be understood to be about relations of classes. The 

sentence 'All philosophers are wise' says that the class of philosophers is contained by the 

class of wise people. In other words, everyone who belongs to the class of philosophers 

belongs to the class of wise people too, and there is no one belonging to the class of 

philosophers who does not belong to the class of wise people. This can be expressed with this 

simple figure: 

 

 
If A is the class of philosophers, and B is the class of wise people, then the formula 

x(A(x)  B(x)) , which is equvalent to  ~x(A(x) & ~B(x))  , simply states that the part of A 

which does not belong to B is empty – denoted by the dark area. 

 

"Some politicians are liars" says that the class of politicians and the class of liars have 

elements in common. That is: 

 



 
If A is the class of philosophers and B is the class of liars, then the formula 

x(A(x) & B(x))  states that the intersection of A and B is nonempty, since some objects 

belong to there – denoted by an x. 

 

"All orcs are not hadsome" says that the class of orcs and the class of handsome creatures 

have no element in common. That is: 

 

 
If A is the class of orcs and B is the class of handsome creatures, then the formula 

x(A(x)  ~B(x)) , which is equivalent to  ~x(A(x) & B(x)) , states that the intersection of A 

and B is empty, and no objects belong to there – denoted by the dark area. 

 

Finally, "Some hobbits are not coward" state that class of hobbits is not contained by the class 

of coward creatures. In other words, some elements of the class of hobbits do not belong to 

the class of cowards. That is: 

 

 
If A is the class of hobbits and B is the class of cowards, then the formula  

x(A(x) & ~B(x))  states that the part of A which does not belong to B is nonempty  – denoted 

by an x which belongs to there. 

 

Note: These figures illustrate that some categorical sentences are negations of each other. For 

example, it is clear that, when A and B refer to the same predicates, x(A(x)  B(x))  and  

x(A(x) & ~B(x))  state the opposite, since the latter is equivalent to  ~x(A(x)  B(x))  , 

which is the negation of the former. On the figures we can see that the former displays an 

empty area where the latter displays a nonempty one. The same holds for  x(A(x)  ~B(x))  



and  x(A(x) & B(x)) . Since these pairs of sentences can never be simultaneously true (nor 

simultaneously false), traditionally we say that they contradict one another.  That also means 

that if  P  is a formula that is logically equivalent to  Q , then both pairs  P and ~Q , and  ~P 

and Q , are contradictory formulas. 

 

 

Checking Categorical Syllogisms 
 

Categorical syllogisms are those inferences, studied by Aristotle, which validly draw a 

categorical conclusion from two categorical premises having one predicate term in common. 

For example: 

 

 No orcs are handsome. 

 All towerguards are orcs. 

 ------------------------------------ 

 No towerguards are handsome. 

 

How are we to check the validity of such an inference? One way would be to find a method, 

such as the one using truth tables in propositional logic, which can tell the validity of every 

inference in predicate logic, including the categorical syllogisms. Such methods exist, but 

because they are too difficult to study here we will discuss a simpler method which is suitable 

for only categorical syllogisms. This is based on Venn diagrams. 

 

Step 1 
 

The two premises and the conclusion altogether contain three predicate terms. The three terms 

are represented by three circular shapes, each having common parts with all the others and 

also having separate parts. Here all the possibilities can be illustrated: 

 

 
 

 

 



Step 2 
 

The contents of the premises are indicated in the way discussed earlier. The order of using the 

premises is important: if one premise states that an area is empty (universal assertive or 

universal negative), and the other premise states that an area is nonempty (particular assertive 

or particular negative), then we start with the former one and continue with the latter one. In 

other cases the order does not matter. 

 

Step 3 
 

The validity or invalidity of inferencing the conclusion is shown by the results of Steps 1 and 

2. 

 

Examples 
 

1. Let’s check the above syllogism speaking about orcs, handsome creatures and towerguards! 

 

 

Explanation: 

The content of the first premise is represented by the dark 

region: O&H is empty, since there is no handsome orc. 

The content of the second premise is represented by the 

lighter grey region: T&~O is empty, since there is no 

towerguard who is not an orc. Now the conclusion says 

that there is no handsome towerguard, i.e. H&T is empty. 

This can be read from the figure, since H&T&O was 

found empty by the first premise, and H&T&~O was 

found empty by the second premise. The syllogism is 

valid. 

 

2. Let’s check the validity of the following, very simple and intuitively clear, syllogism: 

 

All hedgehogs are mammals. 

All mammals are animals. 

---------------------------------- 

All hedgehogs are animals. 

 

 

 

Explanation: 

The content of the first premise is represented by the dark 

region: H&~M is empty, since there is no hedgehog which is 

not a mammal. The content of the second premise is 

represented by the lighter grey region: M&~A is empty, 

since there is no mammal that is not an animal. The validity 

of the conclusion is affirmed by the figure, since it says that 

H&~A is empty – indeed: H&~A&~M was found empty by 

the first premise, H&~A&M was found empty by the second 

premise. 

 

 

3. Let’s check the validity of the following syllogism containing a nonempty premise: 



 

Every vampire is a night-creature. 

There are immortal vampires. 

------------------------------------------ 

There are immortal night creatures. 

 

 

Explanation: 

The content of the first premise is represented by the dark 

region: V&~N is empty, since there is no vampire which is 

not a night-creature. The content of the second premise is 

represented by the region with the x in it: V&I is nonempty, 

since there exist immortal vampires. Since V&I&~N was 

found empty by the first premise, we have to put the x in 

V&I&N. The validity of the conclusion is affirmed by the 

figure, since it says that I&M is nonempty – and indeed, 

I&M&V was found nonempty by the second premise. 

 

Note: The example illustrates why we needed the restriction concerning the order of 

representing the premises. If we started with the second premise, we would only know that 

somewhere in V&I there is an x, but we could not decide whether to put the x in V&I&~N or 

in V&I&N. But since the first can be ruled out by the first premise, it is better to start with it. 

 

4. Let’s check the validity of the following, seemingly valid but eventually invalid, syllogism: 

 

No elves are humble. 

All elves are brave. 

------------------------------------- 

Some are brave but not humble. 

 

 

Explanation: 

The content of the first premise is represented by the dark 

region: E&H is empty, since there is no humble elf. The 

content of the second premise is represented by the lighter 

grey region: E&~B is empty, since there is no elf who is not 

brave. Now the conclusion says that there is something in 

B&~H. But on our figure there is no x, i.e. no premise have 

stated the nonemptiness of any area. There could be: it’s left 

possible by the premises, but still there isn’t. So the 

inference is invalid. 

 

 

Note: In the above example both the premises are such that they state the emptiness of a 

certain area. None of them states nonemptiness. Now if that is the case, then they surely do 

not imply nonemptiness, and no conclusion stating existence can be drawn. Why do some of 

us feel that the inference is valid? We assume that those things we speak about do exist: If we 

speak of elves, then elves surely exist. But it is clearly not the case. If there were elves, then 

the only place left for an x within E would be E&B&~H, and then the conclusion stating the 

nonemptiness of B&~H would be justified. 
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