The Borel-Kolmogorov Paradox and conditional expectations

Zalán Gyenis
Rényi Institute of Mathematics, Budapest
Gábor Hofer-Szabó
Research Centre for the Humanities, Budapest
Miklós Rédei
London School of Economics

The Borel-Kolmogorov Paradox

What is the conditional probability that a randomly chosen point is on an arc of a great circle of the sphere on the condition that it lies on that great circle?

Tension:

(1) Intuition: the conditional probability is proportional to the length of the arc.
(2) Fact: since a great circle has surface measure zero, Bayes' formula cannot be used to calculate the conditional probability.

Main messages

(1) Use conditional expectation to conditionalize.
(2) This will allow for conditionalizing on probability zero events, as in case of the Borel-Kolmogorov Paradox.
(3) Using conditional expectation the Borel-Kolmogorov Paradox is not paradoxical.

Historical remarks

- The Borel-Kolmogorov Paradox was formulated by Borel in 1909 before Kolmogorov's (1933) measure-theoretic probability theory.
- Kolmogorov's own resolution of the Paradox is based on the theory of conditional expectation.
- Since Kolmogorov's work, conditional expectation is the standard device for conditionalization in probability theory.

Outline

(1) Conditioning using conditional expectation
(2) The Borel-Kolmogorov Paradox
(3) Remarks

Conditioning using conditional expectation

Conditional expectation

- Conditional expectation is a coarse-graining.

Conditional expectation

- Conditional expectation is a coarse-graining.
- (X, \mathcal{S}, p) : probability measure space

Conditional expectation

- $\mathcal{L}^{1}(X, \mathcal{S}, p)$: set of p-integrable functions

Conditional expectation

- $\mathcal{L}^{1}(X, \mathcal{S}, p)$: set of p-integrable functions
- p defines a functional $\phi_{p}(f) \doteq \int_{X} f d p, \quad f \in \mathcal{L}^{1}(X, \mathcal{S}, p)$

Conditional expectation

- $\left(X, \mathcal{A}, p_{\mathcal{A}}\right)$: coarse-grained probability measure space

Conditional expectation

- $\mathscr{E}(\cdot \mid \mathcal{A}): \mathcal{L}^{1}(X, \mathcal{S}, p) \rightarrow \mathcal{L}^{1}\left(X, \mathcal{A}, p_{\mathcal{A}}\right)$: conditional expectation

Conditional expectation

Definition

A map

$$
\mathscr{E}(\cdot \mid \mathcal{A}): \mathcal{L}^{1}(X, \mathcal{S}, p) \rightarrow \mathcal{L}^{1}\left(X, \mathcal{A}, p_{\mathcal{A}}\right)
$$

is called an \mathcal{A}-conditional expectation if:
(i) $\mathscr{E}(f \mid \mathcal{A})$ is \mathcal{A}-measurable for all $f \in \mathcal{L}^{1}(X, \mathcal{S}, p)$;
(ii) $\mathscr{E}(\cdot \mid \mathcal{A})$ preserves the integration on elements of \mathcal{A} :

$$
\int_{Z} \mathscr{E}(f \mid \mathcal{A}) d p_{\mathcal{A}}=\int_{Z} f d p \quad \forall Z \in \mathcal{A}
$$

Bayesian statistical inference

Bayesian statistical inference

Problem of statistical inference (informal)

Given a probability measure $p_{\mathcal{A}}^{\prime}$ on \mathcal{A}, what is its extension to \mathcal{S} ?

Bayesian statistical inference

Problem of statistical inference (informal)

Given a probability measure $p_{\mathcal{A}}^{\prime}$ on \mathcal{A}, what is its extension to \mathcal{S} ?
Reformulated in terms of functionals:

Bayesian statistical inference

Problem of statistical inference (informal)

Given a probability measure $p_{\mathcal{A}}^{\prime}$ on \mathcal{A}, what is its extension to \mathcal{S} ?
Reformulated in terms of functionals:

Problem of statistical inference

Given a continuous linear functional $\phi_{\mathcal{A}}^{\prime}$ on $\mathcal{L}^{1}\left(X, \mathcal{A}, p_{\mathcal{A}}\right)$, what is its extension to $\mathcal{L}^{1}(X, \mathcal{S}, p)$?

Bayesian statistical inference

Problem of statistical inference (informal)

Given a probability measure $p_{\mathcal{A}}^{\prime}$ on \mathcal{A}, what is its extension to \mathcal{S} ?
Reformulated in terms of functionals:

Problem of statistical inference

Given a continuous linear functional $\phi_{\mathcal{A}}^{\prime}$ on $\mathcal{L}^{1}\left(X, \mathcal{A}, p_{\mathcal{A}}\right)$, what is its extension to $\mathcal{L}^{1}(X, \mathcal{S}, p)$?

There is no unique answer, but:

Bayesian statistical inference

Problem of statistical inference (informal)

Given a probability measure $p_{\mathcal{A}}^{\prime}$ on \mathcal{A}, what is its extension to \mathcal{S} ?
Reformulated in terms of functionals:

Problem of statistical inference

Given a continuous linear functional $\phi_{\mathcal{A}}^{\prime}$ on $\mathcal{L}^{1}\left(X, \mathcal{A}, p_{\mathcal{A}}\right)$, what is its extension to $\mathcal{L}^{1}(X, \mathcal{S}, p)$?

There is no unique answer, but:
Bayesian statistical inference
Let the extension ϕ^{\prime} be:

$$
\phi^{\prime}(f) \doteq \phi_{\mathcal{A}}^{\prime}(\mathscr{E}(f \mid \mathcal{A})) \quad \forall f \in \mathcal{L}^{1}(X, \mathcal{S}, p)
$$

Conditional probability

Definition

The conditional probability $p^{\prime}(B)$ is simply the application of the Bayesian statistical inference to the characteristic function χ_{B} :

$$
p^{\prime}(B) \doteq \phi_{\mathcal{A}}^{\prime}\left(\mathscr{E}^{(}\left(\chi_{B} \mid \mathcal{A}\right)\right)
$$

Conditional probability

Remarks

(1) $p^{\prime}(B)$ depends on three factors: $\mathcal{A}, \mathcal{E}(\cdot \mid \mathcal{A})$ and $\phi_{\mathcal{A}}^{\prime}$

Conditional probability

Remarks

(1) $p^{\prime}(B)$ depends on three factors: $\mathcal{A}, \mathcal{E}(\cdot \mid \mathcal{A})$ and $\phi_{\mathcal{A}}^{\prime}$
(2) In the special case when

$$
\begin{aligned}
& \mathcal{A} \text { is generated by }\left\{A, A^{\perp}\right\}, \\
& p(A) \neq 0 ; \\
& p_{\mathcal{A}}^{\prime}(A)=1,
\end{aligned}
$$

the conditional probability can be given by the Bayes formula:

$$
p^{\prime}(B)=\frac{p(B \cap A)}{p(A)}
$$

Conditional probability

Remarks

(1) $p^{\prime}(B)$ depends on three factors: $\mathcal{A}, \mathcal{E}(\cdot \mid \mathcal{A})$ and $\phi_{\mathcal{A}}^{\prime}$
(2) In the special case when

$$
\begin{aligned}
& \mathcal{A} \text { is generated by }\left\{A, A^{\perp}\right\}, \\
& p(A) \neq 0 ; \\
& p_{\mathcal{A}}^{\prime}(A)=1,
\end{aligned}
$$

the conditional probability can be given by the Bayes formula:

$$
p^{\prime}(B)=\frac{p(B \cap A)}{p(A)}
$$

(3) Elements of \mathcal{A} can also have zero prior probability p. Hence, it is possible to obtain conditional probabilities with respect to probability zero conditioning events if one uses conditional expectations.

The Borel-Kolmogorov Paradox

The Borel-Kolmogorov Paradox

Let $(S, \mathcal{B}(S), p)$ be the probability measure space on the sphere S with the uniform probability p on S. What is the conditional probability of being on an arc on a great circle C on condition of being on a great circle C of S ?

The Borel-Kolmogorov Paradox

\mathcal{O} : generated by Borel measurable sets of circles parallel to C

The Borel-Kolmogorov Paradox

\mathcal{O} : generated by Borel measurable sets of circles parallel to C

Uniform conditional probability

The Borel-Kolmogorov Paradox

\mathcal{O} : generated by Borel measurable sets of circles parallel to C

\mathcal{M} : generated by Borel measurable sets of meridian circles containing C

Uniform conditional probability

The Borel-Kolmogorov Paradox

\mathcal{O} : generated by Borel measurable sets of circles parallel to C

Uniform conditional probability
\mathcal{M} : generated by Borel measurable sets of meridian circles containing C

Non-uniform conditional probability

Remarks

Remark 1

Standard view

". . . we have different conditional distributions depending on how we describe the circle." (Myrvold, 2014)

The Borel-Kolmogorov Paradox is paradoxical because the conditional probabilities of the same event on the same conditioning events should not depend on the different parametrizations (violation of the Labelling Irrelevance).

Remark 1

Our view

- Two Boolean algebras of random events are the same if there is an isomorphism between them.

Remark 1

Our view

- Two Boolean algebras of random events are the same if there is an isomorphism between them.
- Proposition. There exists no isomorphism between \mathcal{O} and \mathcal{M}.

Remark 1

Our view

- Two Boolean algebras of random events are the same if there is an isomorphism between them.
- Proposition. There exists no isomorphism between \mathcal{O} and \mathcal{M}.

The Borel-Kolmogorov Paradox merely displays a sensitive dependence of conditional probabilities of the same event on different conditioning Boolean subalgebras with respect to which conditional probabilities are defined in terms of conditional expectations. These conditional probabilities are answers to different questions - not different answers to the same question.

Remark 2

Another standard view

Only the uniform conditional distribution is intuitively correct.

Remark 2

Our view

Both conditional distributions are intuitively correct.

Remark 2

Our view

Both conditional distributions are intuitively correct.
One obtains a uniform distribution on the sphere by generating points:

Remark 2

Our view

Both conditional distributions are intuitively correct.
One obtains a uniform distribution on the sphere by generating points: uniformly on all circles in \mathcal{O}.

Remark 2

Our view

Both conditional distributions are intuitively correct.
One obtains a uniform distribution on the sphere by generating points: uniformly on all circles in \mathcal{O}. non-uniformly on all meridian circles in \mathcal{M}.

Remark 2

Our view

- The intuition - that only the uniform conditional distribution is correct - might come from the intutition that the uniform length measure is singled out by pure probabilistic means.

Remark 2

Our view

- The intuition - that only the uniform conditional distribution is correct - might come from the intutition that the uniform length measure is singled out by pure probabilistic means.
- To single out the uniform length measure one needs to use further non-probabilistic mathematical conditions, e.g.

Remark 2

Our view

- The intuition - that only the uniform conditional distribution is correct - might come from the intutition that the uniform length measure is singled out by pure probabilistic means.
- To single out the uniform length measure one needs to use further non-probabilistic mathematical conditions, e.g.
group-theoretic: it is the unique measure invariant with respect to the subgroup of rotations on the sphere;
geometric: it is the restriction of the Lebesgue measure to the circle as differentiable manifold.

Summary

(1) The proper mathematical device to handle conditional probabilities is the theory of conditional expectation.
(2) This theory makes it possible to conditionalize on probability zero events, as in the case of the Borel-Kolmogorov Paradox.
(3) Obtaining different conditional probabilities is not paradoxical because

- they cannot be regarded as conditional probabilities of the same event with respect to the same conditioning events;
- both are intuitively correct if seen as describing generation of points on sphere with uniform distribution.

References

- Z. Gyenis, G. Hofer-Szabó, and M. Rédei, "Conditioning using conditional expectation: the Borel-Kolmogorov Paradox," (submitted).
- A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, (Springer, Berlin, 1933); English translation: Foundations of the Theory of Probability, (Chelsea, New York, 1956).
- W. Myrvold, 'You can't always get what you want: Some considerations regarding conditional probabilities," Erkenntnis, 80, 573-603 (2015).
- M. Rescorla, "Some epistemological ramifications of the Borel-Kolmogorov Paradox," Synthese, 192, 735-767 (2015).

