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The Borel-Kolmogorov Paradox

What is the conditional probability that a randomly chosen point is on an

arc of a great circle of the sphere on the condition that it lies on that great

circle?

Tension:

1 Intuition: the conditional

probability is proportional to

the length of the arc.

2 Fact: since a great circle has

surface measure zero, Bayes'

formula cannot be used to

calculate the conditional

probability.
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Main messages

1 Use conditional expectation to conditionalize.

2 This will allow for conditionalizing on probability zero events, as in

case of the Borel-Kolmogorov Paradox.

3 Using conditional expectation the Borel-Kolmogorov Paradox is not

paradoxical.
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Historical remarks

The Borel-Kolmogorov Paradox was formulated by Borel in 1909

before Kolmogorov's (1933) measure-theoretic probability theory.

Kolmogorov's own resolution of the Paradox is based on the theory of

conditional expectation.

Since Kolmogorov's work, conditional expectation is the standard

device for conditionalization in probability theory.
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Conditioning using conditional expectation
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Conditional expectation

Conditional expectation is a coarse-graining.

(X ,S, p): probability measure space
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Conditional expectation

L1(X ,S, p): set of p-integrable functions

p de�nes a functional φp(f )
.
=

∫
X
f dp, f ∈ L1(X ,S, p)
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Conditional expectation

(X ,A, pA): coarse-grained probability measure space
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Conditional expectation

E (·|A) : L1(X ,S, p)→ L1(X ,A, pA): conditional expectation
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Conditional expectation

De�nition

A map

E (·|A) : L1(X ,S, p)→ L1(X ,A, pA)

is called an A-conditional expectation if:

(i) E (f |A) is A-measurable for all f ∈ L1(X ,S, p);
(ii) E (·|A) preserves the integration on elements of A:∫

Z

E (f |A)dpA =

∫
Z

fdp ∀Z ∈ A.
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Bayesian statistical inference

Problem of statistical inference (informal)

Given a probability measure p′A on A, what is its extension to S?

Reformulated in terms of functionals:

Problem of statistical inference

Given a continuous linear functional φ′A on L1(X ,A, pA), what is its
extension to L1(X ,S, p)?

There is no unique answer, but:

Bayesian statistical inference

Let the extension φ′ be:

φ′(f )
.
= φ′A(E (f |A)) ∀f ∈ L1(X ,S, p)
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Conditional probability

De�nition

The conditional probability p′(B) is simply the application of the

Bayesian statistical inference to the characteristic function χB :

p′(B)
.
= φ′A(E (χB |A))
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Conditional probability

Remarks
1 p′(B) depends on three factors: A, E(·|A) and φ′A

2 In the special case when
I A is generated by {A,A⊥},
I p(A) 6= 0;
I p′A(A) = 1,

the conditional probability can be given by the Bayes formula:

p′(B) =
p(B ∩ A)

p(A)

3 Elements of A can also have zero prior probability p. Hence, it is

possible to obtain conditional probabilities with respect to probability

zero conditioning events if one uses conditional expectations.
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The Borel-Kolmogorov Paradox
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The Borel-Kolmogorov Paradox

Let (S ,B(S), p) be the probability measure space on the sphere S with the

uniform probability p on S . What is the conditional probability of being on

an arc on a great circle C on condition of being on a great circle C of S?
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The Borel-Kolmogorov Paradox

O: generated by Borel measurable

sets of circles parallel to C

c

C

x

y

z

θc

Uniform conditional probability

M: generated by Borel measurable

sets of meridian circles containing C

North Pole

South Pole

φ

x

y

z

C

c

Non-uniform conditional probability
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Remarks
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Remark 1

Standard view

�. . . we have di�erent conditional distributions depending on how

we describe the circle.� (Myrvold, 2014)

The Borel-Kolmogorov Paradox is paradoxical because the conditional

probabilities of the same event on the same conditioning events should

not depend on the di�erent parametrizations (violation of the Labelling

Irrelevance).
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Remark 1

Our view

Two Boolean algebras of random events are the same if there is an

isomorphism between them.

Proposition. There exists no isomorphism between O andM.

The Borel-Kolmogorov Paradox merely displays a sensitive dependence of

conditional probabilities of the same event on di�erent conditioning

Boolean subalgebras with respect to which conditional probabilities are

de�ned in terms of conditional expectations. These conditional probabilities

are answers to di�erent questions � not di�erent answers to the same

question.
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Remark 2

Another standard view

Only the uniform conditional distribution is intuitively correct.
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Remark 2

Our view

Both conditional distributions are intuitively correct.

One obtains a uniform distribution on the sphere by generating points:

uniformly on all circles in O.

c

C

x

y

z

θc

non-uniformly on all meridian circles

inM.
North Pole

South Pole

φ

x

y

z

C

c

Gyenis, Hofer-Szabó and Rédei Borel-Kolmogorov 22 / 25



Remark 2

Our view

Both conditional distributions are intuitively correct.

One obtains a uniform distribution on the sphere by generating points:

uniformly on all circles in O.

c

C

x

y

z

θc

non-uniformly on all meridian circles

inM.
North Pole

South Pole

φ

x

y

z

C

c

Gyenis, Hofer-Szabó and Rédei Borel-Kolmogorov 22 / 25



Remark 2

Our view

Both conditional distributions are intuitively correct.

One obtains a uniform distribution on the sphere by generating points:

uniformly on all circles in O.

c

C

x

y

z

θc

non-uniformly on all meridian circles

inM.
North Pole

South Pole

φ

x

y

z

C

c

Gyenis, Hofer-Szabó and Rédei Borel-Kolmogorov 22 / 25



Remark 2

Our view

Both conditional distributions are intuitively correct.

One obtains a uniform distribution on the sphere by generating points:

uniformly on all circles in O.

c

C

x

y

z

θc

non-uniformly on all meridian circles

inM.
North Pole

South Pole

φ

x

y

z

C

c

Gyenis, Hofer-Szabó and Rédei Borel-Kolmogorov 22 / 25



Remark 2

Our view

The intuition � that only the uniform conditional distribution is correct

� might come from the intutition that the uniform length measure is

singled out by pure probabilistic means.

To single out the uniform length measure one needs to use further
non-probabilistic mathematical conditions, e.g.

I group-theoretic: it is the unique measure invariant with respect to the

subgroup of rotations on the sphere;
I geometric: it is the restriction of the Lebesgue measure to the circle

as di�erentiable manifold.
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Summary

1 The proper mathematical device to handle conditional probabilities is

the theory of conditional expectation.

2 This theory makes it possible to conditionalize on probability zero

events, as in the case of the Borel-Kolmogorov Paradox.
3 Obtaining di�erent conditional probabilities is not paradoxical

because
I they cannot be regarded as conditional probabilities of the same event

with respect to the same conditioning events;
I both are intuitively correct if seen as describing generation of points

on sphere with uniform distribution.
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