(2018). Hofer-Szabó, G., P. Vecsernyés, Quantum Theory and Local Causality, Dordrecht: Springer Brief. Springer

(2017). Hofer-Szabó, G., L. Wronski (eds.) Making it Formally Explicit -- Probability, Causality and Indeterminism, European Studies in the Philosophy of Science Series Vol. 6, Dordrecht: Springer Verlag. Springer

(2013b). Hofer-Szabó G., M. Rédei, L. E. Szabó, The Principle of the Common Cause, Cambridge: Cambridge University Press. CUP

(2013a). A valószínűség interpretációi (Interpretations of Probability), Typotex Kiadó, Budapest. Typo


(2024c). Hofer-Szabó G., "Quantum mechanics without operational equivalence," Synthese, (submitted) (PhilSci)

(2024b). Hofer-Szabó G., "PBR, nonreality and entangled measurement," Foundations of Physics, (forthcoming) (quant-ph)

(2024a). Hofer-Szabó G., "Sequential measurements and the Kochen-Specker arguments," Journal for General Philosophy, 55, 29-42. (PhilSci)

(2022). Hofer-Szabó G., "Two concepts of noncontextuality in quantum mechanics," Studies in History and Philosophy of Science93, 21-29. (PhilSci)

(2021e). M. Gömöri, G. Hofer-Szabó, "On the meaning of EPR's reality criterion," Synthese, 199, 13441-13469. (PhilSci)

(2021d). Hofer-Szabó G.  "Causal contextuality and contextuality-by-default are different concepts," Journal of Mathematical Phychology, 104, 102590.

(2021c). Hofer-Szabó G., "Three noncontextual hidden variable models for the Peres-Mermin square," European Journal for the Philosophy of Science, 11, 30. (PhilSci)

(2021b). P. Fazekas, B. Gyenis, G. Hofer-Szabó, G. Kertész, "A dynamical systems approach to causation," Synthese, 198, 6065-6087.  (Philarchive)

(2021a). Hofer-Szabó G., "Commutativity, comeasurability, and contextuality in the Kochen-Specker arguments," Philosophy of Science, 88, 483-510.  (PhilSci)

(2020b). Hofer-Szabó G., Placek T., Luc J., "Modality in Physics," Foundations  of Physics,  50, 515-521.

(2020a). Hofer-Szabó G., "On the three types of Bell's inequality," in Orly Shenker, Meir Hemmo (eds.) Quantum, Probability, Logic: The Work and Infuence of Itamar Pitowsky, Berlin: Springer, 353-374.  (quant-ph)

(2019). Hofer-Szabó G., "Quantum mechanics as a representation of classical conditional probabilities," Journal of Mathematical Physics, 60, 062106.  (quant-ph)

(2018). Hofer-Szabó G., "Bell's local causality is a d-separation criterion," in Ozawa, M., Butterfield, J., Halvorson, H., Rédei, M., Kitajima, Y., Buscemi, F. (eds.) Reality and Measurement in Algebraic Quantum Field theory, Springer Proceedings in Mathematics and Statistics, 67-82.  (quant-ph)

(2017c). M. Gömöri, B. Gyenis, G. Hofer-Szabó, "On the coming about of macrostates," in G. Hofer-Szabó and L. Wroński (eds.) Making it Formally Explicit -- Probability, Causality and Indeterminism, European Studies in the Philosophy of Science Series Vol. 6, Springer Verlag, 213-229.  (PhilSci)

(2017b). Z. Gyenis, G. Hofer-Szabó, M. Rédei, "Conditioning using conditional expectation: the Borel-Kolmogorov paradox," Synthese, 194(7), 2595-2630. (PhilSci)

(2017a). Hofer-Szabó G., "How human and nature shake hands: the role of no-conspiracy in physical theories," Studies in the History and Philosophy of Modern Physics, 57, 89-97. (PhilSci)

(2016b). Hofer-Szabó G., "Three principles leading to the Bell inequalities," Belgrade Philosophical Annual, 29, 57-66.

(2016a). Hofer-Szabó G., P. Vecsernyés, "A generalized definition of Bell's local causality," Synthese, 193(10), 3195–3207. (PhilSci)

(2015d). Hofer-Szabó G., "Local causality and complete specification: a reply to Seevinck and Uffink," in U. Mäki, ‎I. Votsis, ‎S. Ruphy, G. Schurz (eds.), Recent Developments in the Philosophy of Science: EPSA13 Helsinki, Springer Verlag, 209-226. (PhilSci)

(2015c). Hofer-Szabó G., "Relating Bell's local causality to the Causal Markov Condition," Foundations of Physics. 45(9), 1110-1136. (PhilSci)

(2015b). Hofer-Szabó G., P. Vecsernyés, "On the concept of Bell's local causality in local classical and quantum theory,"  Journal of Mathematical Physics, 56032303. (quant-ph)

(2015a). Hofer-Szabó G., "On the relation between the probabilistic characterization of the common cause and Bell's notion of local causality," Studies in the History and Philosophy of Modern Physics, 49, 32-41. (PhilSci)

(2014b). Hofer-Szabó G., "Noncommutative causality in algebraic quantum field theory," in M. C. Galavotti, D. Dieks, W. J. Gonzalez, S. Hartmann, Th. Uebel, M. Weber (eds.), The Philosophy of Science in a European Perspective, Vol. 5., 543-554.

(2014a). Hofer-Szabó G., "EPR correlations, Bell inequalities and common cause systems," in D. Aerts, S. Aerts and C. de Ronde (eds.), Probing the Meaning of Quantum Mechanics: Physical, Philosophical and Logical Perspectives, 263-277.

(2013b). Hofer-Szabó G., P. Vecsernyés, "Bell inequality and common causal explanation in algebraic quantum field theory," Studies in the History and Philosophy of Modern Physics, 44, 404–416. (PhilSci)

(2013a). Hofer-Szabó G., P. Vecsernyés, "Noncommutative Common Cause Principles in algebraic quantum field theory," Journal of Mathematical Physics, 54042301. (quant-ph)

(2012c). Hofer-Szabó G., P. Vecsernyés, "Noncommutative local common causes for correlations violating the Clauser-Horne inequality," Journal of Mathematical Physics, 53, 122301. (quant-ph)

(2012b). Hofer-Szabó G., P. Vecsernyés, "Reichenbach's common cause principle in algebraic quantum field theory with locally finite degrees of freedom," Foundations of Physics, 42, 241-255. (quant-ph)

(2012a). Hofer-Szabó G., "Separate common causal explanation and the Bell inequalities," International Journal of Theoretical Physics, 51, 110-123. (PhilSci)

(2011). Hofer-Szabó G., "Bell(δ) inequalities derived from separate common causal explanation of almost perfect EPR anticorrelations,"  Foundations of Physics, 41, 1398-1413. (PhilSci)

(2008). Hofer-Szabó G., "Separate- versus common-common-cause-type derivations of the Bell inequalities," Synthese, 163/2, 199-215. (PhilSci)

(2006c). Hofer-Szabó G., M. Rédei, I. San Pedro, "Challenging a recent minimal assumption derivation of a Bell-type inequality," (manuscript). (pdf)

(2006b). Hofer-Szabó G., "Exchangeability and conditionally identical common cause systems," International Journal of Theoretical Physics, 45, 1308-1322.   (pdf)

(2006a). Hofer-Szabó G., M. Rédei, "Reichenbachian common cause systems of arbitrary finite size exist," Foundations of Physics, 35, 745-756. (ps)

(2004). Hofer-Szabó G., M. Rédei, "Reichenbachian common cause systems," International Journal of Theoretical Physics, 43, 1819-1826. (PhilSci)

(2002). Hofer-Szabó G., M. Rédei, L. E. Szabó, "Common causes are not common common causes," Philosophy of Science, 69, 623-633. (PhilSci)

(2000b). Hofer-Szabó G., M. Rédei, L. E. Szabó, "Reichenbach’s common cause principle: recent results and open questions," Reports on Philosophy, 20, 85-109. (pdf)

(2000a). Hofer-Szabó G., M. Rédei, L. E. Szabó, "Common cause completability of classical and quantum probability spaces," International Journal of Theoretical Physics, 39, 913-919. (ps)

(1999). Hofer-Szabó G., M. Rédei, L. E. Szabó, "On Reichenbach's common cause principle and on Reichenbach's notion of common cause," The British Journal for the Philosophy of Science, 50, 377-399. (quant-ph)

(1998). Hofer-Szabó G., "Reichenbach`s common cause definition on Hilbert lattices," International Journal of Theoretical Physics, 37, 435-443.

(1997). Hofer-Szabó G., "The formal existence and uniqueness of the Reichenbachian common cause on Hilbert lattices," International Journal of Theoretical Physics, 36, 1973-1980.

 (1996). Hofer-Szabó G., "Two non-Kolmogorovian generalizations of Reichenbach`s common cause definition on Hilbert lattices," Periodica Politechnica, 40, 187-198.

Papers in Hungarian:

(2025). "Atomizmus," (szócikk), Magyar Filozófiai Enciklopédia, (forthcoming).

(2025). "Kvantummechanika," (szócikk), Magyar Filozófiai Enciklopédia,  (forthcoming).

(2025). "Okság," (szócikk), Magyar Filozófiai Enciklopédia, (forthcoming).

(2025). "Relativitáselmélet," (szócikk), Magyar Filozófiai Enciklopédia, (forthcoming).

(2025). "Valószínűség," (szócikk), Magyar Filozófiai Enciklopédia, (forthcoming).

(2024). "A kvantumelmélet modális interpretációja," (Modal Interpretation of Quantum Theory), Magyar Filozófiai Szemle, (submitted).

(2024). "Kvantumelmélet és interpretáció," (Quantum Theory and Interpretation), Magyar Filozófiai Szemle, (forthcoming).

(2023). "Az 'itt' metafizikája," (The metaphysics of 'here'), Pannonhalmi Szemle, 31/1, 119-122.

(2023). "Mi a kvantumállapot?," (What is the quantum state?), Fizikai Szemle, 2023/1, 17-21.

(2022). "A társadalomtudományok és természettudományok filozófiai alapjairól," (On the philosophical foundations of social and natural sciences), iASK Évkönyv, (forthcoming).

(2021). "Kant keze és az abszolút tér," (Kant's hand and the absolute space), Polanyiana, 30, 70-78.

(2021). "Szociofizika," (Sociophyiscs), Vasi Szemle, 75, 58-61.

(2021). P. Fazekas, B. Gyenis, G. Hofer-Szabó, G. Kertész, "Okság: egy dinamikus rendszereken alapuló magközelítés," (Causality:  A dynamical systems approach) Magyar Filozófiai Szemle, 65, 26-45.

(2018). "A kvantumelmélet nehéz öröksége," (The difficult legacy of quantum theory), Különbség, 18/1, 81-87.

(2017). "Matematika, filozófia és megértés," (Mathematics, Philosophy, and Understanding) Műhely, 5-6, 86-88.

(2017). "Julian Barbour időtlen világa," (The timeless word of Julian Barbour), in Veress Károly (ed.) Emlékezet és felejtés. Interdiszciplináris párbeszéd 5., Kolozsvár, Egyetemi Műhely Kiadó, 11-24. (doc)

(2017). "A kvantummechanika és a huzat logikája," (Quantum mechanics and the logic of draught) Magyar Tudomány, 2017/1, 44-47. 

(2014). "Játék és kvantumelmélet," (Game and quantum theory), in Veress Károly (ed.) Játék és tudomány. Interdiszciplináris párbeszéd 2., Kolozsvár, Egyetemi Műhely Kiadó, 9-13.

(2012). "Vis aleativa - a valószínűség propensity-interpretációja," (Vis aleativa - the propensity interpretation of probability)  Magyar Filozófiai Szemle, 2012/1, 56, 95-117.

(2011). "Miért tarthatatlan a klasszikus valószínűség?" (Why classical probability is untenable?) Különbség11, 75-92.

(2010). "A valószínűség fogalmának kialakulása," (The development of the concept of probability) Mérleg, 2010/3-4, 114-136. (pdf)

(2010). "Lewis, valószínűség, Principal Principle" (Lewis, probability, Principal Principle) Világosság, 2010/nyár, 203-211.

(2010). "Korrelációk kauzális magyarázata" (Causal explanation of correlations) Magyar Filozófiai Szemle, 2010/3, 78-97.   (together with: Balázs Gyenis, Zalán Gyenis, Miklós Rédei, László E. Szabó)

(2010). "A valószínűség interpretációi," (Interpretations of probability) Pannonhalmi Szemle, 18. 28-41.

(2010). "Valószínűség és relatív gyakoriság," (Probability and relative frequency) Magyar Tudomány, 2010/10, 1197-1207.

(2010). "Kolmogorov és a relatív gyakoriság," (Kolmogorov and the relative frequency) Magyar Fizikai Szemle, 60, 241-243.

(2006). "A reichenbachi közös ok elv metafizikája," (The metaphysics of Reichenbach’s common cause principle) Világosság, 2006/5, 87-94. (pdf)

(2006). "Bohr és Einstein vitája a modern fizika valóságfogalmáról," (The Bohr-Einstein debate on the concept of reality in modern physics) A Természet világa (submitted).

(2003). "Német-magyar kapcsolatok a természettudományban és a technikában a második világháború után," (German-Hungarian connections in natural sciences during the Second World War) Technikatörténeti Szemle, 25, 262-264.

(2001). "A reichenbach közös ok eredete," (The origin of Reichenbach’s common cause) Magyar Filozófiai Szemle, 45, 83-112.

(1999). "Idő és igazság a logikában," (Time and truth in logic) Világosság, 15/1, 66-69.

(1995). "Halott-e Schrödinger macskája?," (Is Schrödinger’s cat dead?) Magyar Filozófiai Szemle, 39, 359-363.


(2023). Foundations of Physics Foundations

(2023). Operational equivalence and causal structure Bridgman4

(2023). Quantum theory and interpretation Quantum and Interpretation

(2023). Modal interpretation of quantum theory Modal interpretation Modal interpretation2

(2022). Time in physics Time

(2022). Interpretations of quantum theory  Interpretations of QM

(2022). Are quantum states real?  Hidden

(2022). Judgment aggregation Judgment aggregation

(2022). Sociophysics at iASK Sociophysics

(2022). Contextuality in the natural and social sciences Contextuality

(2022). Quantum mechanics without operational equivalence Bridgman Bridgman short Bridgman2 Bridgman3

(2020). A valószínűség interpretációi Interpretations of probability

(2020). Nagydoktori előadás Nagydoktori

(2019). “Probability” iASK_Probability iASK_PhilSci

(2019). “Contextuality beyond physics”  Context_beyond Context_beyond2 Context_beyond3

(2018). “Noncommuting common causes” NoncommutingCC

(2017). “Contextuality” Context Context2 Context3 Context3_short Context4 Context5 Context5_short Context6

(2017). “How human and nature shakes hand: the role of no-conspiracy in physical theories” No-conspiracy No-conspiracy_short  No-conspiracy_shortest

(2017). “Quantum theory and local causality” QTLC_Lucca QTLC_Utrecht QTLC_Utrecht_short QTLC_LSE QTLC_MCMP

(2016). “A dynamical systems approach to causation” Dynamical causation Dynamical causation_short

(2016). “Bell inequalities”  Bell Bell2 Bell3

(2016). Philosophy of Physics in BudapestScience day_CEU

(2016). “The timeless world of Julian Barbour” Barbour Barbour_short  Barbour_shortest  Barbour_Pannonhalma

(2016). “What are quantum states?Quantum states

(2016). “The Common Cause Principle” CCP_Prag(2016). “The Common Cause Principle” CCP_Prague

(2016). “Deconstructing superposition” Deconst

(2016). Quantum mechanics as a representation of classical conditional probabilitiesQMrepr  QMrepr_short  QMrepr_old 

(2016). No-conspiracyNo-cons No-cons_short

(2016). Local causality and causal graphs Causal graphs

(2015). The Borel-Kolmogorov Paradox Borel Borel_short

(2015). On the emergence of macrostates Macro

(2015). On Einstein's Reality CriterionRC   RC_short  RC_presentation

(2014). Bell's local causality in local physical theoriesBellLocCaus BellLocCaus_shorter  BellLocCaus_shortest

(2013). On the localization of the common cause BCAP13  FoundPhys EPSA13

(2013). The frequency interpretation of probabilityFrequency Frequency short Frequency short Hungarian

(2013). Local Causality Loccaus

(2013). Quantum Correlations and Causal Explanation Fulbright

(2013). Idő és determinizmus Putnam

(2012). Habilitációs előadások magyar  angol

(2012). A valószínűség szubjektív interpretációja szubjektív

(2012). “Common Causal Explanation of Bell-type Experiments” (with Miklós Rédei) Lausanne

(2012). “Notes on the PBR theoremPBR

(2012). “The Common Cause Principle and the EPR-Bell scenarioCCP and EPR

(2012). “The Common Cause PrincipleCCP

(2012). “Bell Inequalities in Algebraic Quantum Field Theory(with Péter Vecsernyés) 
Bell in AQFT   Bell in AQFT (short)

(2011). “Common Causal Explanations and the Bell Inequalities(with Péter Vecsernyés)  Common

(2011). “Quantum Field Theory and Causality” (with Péter Vecsernyés)  QFT and Causality

(2010). “Pauli és a valószínűségPauli

(2009). “A kvantumelmélet filozófiájaKvantumfilo

(2009). “Life of Pauli and his Role in the History of SciencePauli

(2008). “Probabilistic CausalityCEU1, CEU2, CEU3

(2007). “Kísérleti metafizikaBell


(2005). Peter Mittelstaedt: "A fizika és a teológia közötti lehetséges viszonyokról," (On the Possible Relations between Physics and Theology) Mérleg, 41, 402-415.

(2004). Hans Küng: "A Kozmosz eredetéhez," (Zum Ursprung des Kosmos) Mérleg, 40, 390-405.

(2002). Stefan Bauberger: "Teremtés vagy Ősrobbannás?," (Schöpfung oder Urknall?) Mérleg, 38, 405-419.

(2001). Anton Zeilinger: "«Nem gondoltam semmi különösre» – Max Planck és a százéves kvantumfizika," («Ich dachte an nichts besonderes» – Max Planck und die 100 Jahre der Quantenphysik) Mérleg, 37, 154-165.

(2000). Carl Friedrich von Weizsäcker: "Ismeret, kétely, hit," (Erkenntnis, Zweifel, Glaube) Pannonhalmi Szemle, 8, 52-60.

(1999). Georg Picht: "A történelem tapasztalata," (Die Erfahrung der Geschichte) Világosság, 15/1, 70-73.

Magyar Tudományos Művek Tára:  MTMT

Google Scholar:  Scholar