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Introduction 
 
Imre Lakatos (1922-1974) is known world-wide by at least two different groups of 
philosophers. For the philosophers of science, he was a great defender of scientific 
rationality: he gave up the idea of ‘instant’ methodological rationality and substituted 
it with the historiographical methodology based on the notion of ‘rational 
reconstruction’. For the philosophers of mathematics, he was a great attacker at the 
formalist school, and instead of the formal-axiomatic features of mathematics he put 
the emphasis on heuristics, the historical processes of theory building and 
conceptualisation. These two ‘incarnations’ of Lakatos are rarely discussed within a 
unique philosophical framework, and not without reason: Lakatos himself never really 
tried to harmonise these two fields of interest. There are signs showing that he 
intended to build a common ground for them, but perhaps this project could not even 
take a very definite shape before his early death. 
 
In this paper I shall concentrate on only one of these topics: his philosophy of 
mathematics; and my primary aim is to give a brief and coherent summary of his 
ideas concerning this field. It should be noted, however, that his philosophy of 
mathematics and that of science obviously have some characteristics in common, 
since they were contrived by the same man, and not at a great temporal distance in his 
academic life, when he was under very similar intellectual influences. My secondary 
purpose therefore is to build this summary in a way that is in accordance with his 
general philosophical theory of science, that is, to give a mild ‘rational reconstruction’ 
of his ideas.1 
 

The context of Lakatos’s philosophy of mathematics 
 
In the Acknowledgements of his doctoral thesis wrote on the philosophy of 
mathematics, Lakatos mentions three authors as the most influential sources for his 
philosophy. This very interesting selection puts his philosophy into a context that 
helps us understand his motives and his purposes. The sources he lists are the 
following: 
 
1. Popper’s falsificationist theory. At the end of the 1950s and the beginning of the 

1960s, when he worked mainly on the philosophy of mathematics, Lakatos was 

                                                 
1 For further comparison of the two fields, the reader is suggested to consult the reference list given 
below. 



under the very strong influence of Karl Popper.2, 3 Popper used the term 
‘falsification’ for the refutation of theories by empirical facts, and his main thesis 
was that there can be no empirical verification of scientific theories. Lakatos 
applied this emphasis on refutations on a discipline that is known to be based 
exclusively on proofs, and showed that when mathematicians do mathematics then 
they very often refute one another’s theories. This emphasis will take us from the 
ideal picture of mathematics (which works only with proofs) to the actual 
mathematical activity. 
 

2. George Pólya’s heuristics. Lakatos was introduced to Pólya’s ideas when he was 
still in Hungary and worked for the Mathematical Institution.4 Pólya emphasised 
the role of heuristic rules in the actual practice of mathematics: his concern was 
informal mathematics, which deals with the way how mathematicians reach their 
results. Lakatos sided with this hardly existent standpoint in the philosophy of 
mathematics, and used these ideas in his assault on the formalist school. 
 

3. Hegel’s dialectics. The Hegelian influence came very early for Lakatos, in his 
university years in Hungary, when he became devotedly involved in the Marxist-
Lukacsian philosophy and ideology.5 However, the trace of the Hegelian ideas can 
be seen also in his latest philosophical writings, and it is particularly present in his 
philosophy of mathematics. In his philosophical education, Lakatos learnt that the 
investigation of a certain subject cannot be limited to a study in the fixed 
conceptual frame of a rigid system, but it should turn to the conceptual dialectics 
that helps the subject develop and show itself. He learnt that the stress is on 
progress, and not on static states; the philosophy of mathematics must be a 
philosophy of development, not of static certainty – less of knowledge and more of 
the growth of knowledge. 

 
Keeping these different influences in mind, let us see how and where Lakatos tried to 
place his own philosophy of mathematics. 
 

The basic types of deductive sciences 
 
In order to see where mathematics is located in the methodological map of all 
sciences, Lakatos gave a classification of the (‘well-working’) sciences, i.e. the 
axiomatic-deductive systems. Forgetting about the subtleties of the classification, I 
would like to distinguish between two basic types, or the two ‘poles’, of these 
systems: there are Euclidean systems, and on the other hand there are quasi-empirical 
systems. (See Fig. 1) What is shared by both of these kinds of systems is the 
axiomatic-deductive ‘spirit’; that is, both take some statements as basic (‘axioms’) 
and try to derive by means of logical deduction further statements (‘theorems’) from 

                                                 
2 Not much later, he formulated his theory in the philosophy of science as an ‘extension’ of Popper’s 
philosophy. 
3 At least two titles of his mathematical writings refer to Popper’s (most important) works: Logic of 
Mathematical Discovery rhymes with Popper’s Logic of Scientific Discovery, while Proofs and 
Refutations consonances with Popper’s Conjectures and Refutations. – See the titles explained later. 
4 He even translated Pólya’s How to Solve It into Hungarian. 
5 It seems that first he did not meet Hegel’s ideas in their original form, but became familiar with them 
only through Lukacs’s interpretation in his History and Class-Consciousness.  



these axioms. The main difference lies in the way in which these systems are 
connected to ‘truth’ and ‘falsity’ – why we assign to them epistemological role and 
credibility. 
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Figure 1 
 
In the case of the Euclidean sciences, truth is ‘injected’ to the system at the ‘top’, at 
the level of axioms. From here truth is inherited ‘downward’ to the theorems 
automatically, since it belongs to the nature of (valid) logical deduction that the truth 
of the premises ensures the truth of the conclusion. This strict, infallible inheritance of 
truth along the ‘truth preserving channels’ of deduction is called proof. Provided that 
the truth of the axioms is given somehow, the truth and validity of the whole system is 
beyond any doubt. It’s worth noting that the deductive channels are not only ‘truth 
preserving’ but ‘meaning preserving’ as well, so meaning of the terms also gets into 
the system at the level of axioms (with definitions), and is inherited along the 
inferences. 
 
In the case of quasi-empirical systems, the situation is quite the opposite: the source 
of truth is the comparison with experience (understood in a broad sense), therefore it 
is the final, ‘bottom’ statements to which one can directly assign truth values. But 
deductive inference is such that truth cannot be inherited in the ‘reverse’ direction or 
‘upward’, for the truth of the conclusion does not enable one to decide whether or not 
the premises are true. (We might as well say that induction is not a legitimate 
procedure in this general deductive scheme.6) Falsity, on the other hand, is inherited 
upward, since the falsity of the conclusion entails the falsity of (at least one of) the 
premises. Quasi-empirical systems therefore work with refutation.7 We mention that 
meaning cannot be inherited ‘upward’ either, so in the case of empirical sciences there 
is a notable freedom about the meanings of terms, unlike with Euclidean sciences. 
Later this point will prove to be essential for mathematics, after we learnt that 
mathematics, surprisingly, belongs to this second group. 
 

                                                 
6 Lakatos discusses the case of the logic of probability as a candidate for exception, but he excludes this 
case by suggesting that for the cognitive certainty chased by science, ‘probable’ truths cannot be 
regarded as satisfactory a solution. 
7 See the previous section about Popper’s influence on Lakatos with his devotion to refutations. 



For most part of the history of science, mathematics was regarded not only as ‘one’ of 
the Euclidean sciences, but as the archetype for all of them – as the stronghold of 
rationality from where we can start our final assault on those uncertain parts of human 
knowledge which still resist the power of pure (Euclidean) reason. But here comes the 
great epistemological difficulty: in order to place mathematics on the throne of all 
Euclidean sciences, we have to be able to give a credible account of the mechanism 
that makes the axioms true. Lakatos discusses (mainly) two candidates for the 
epistemology of Euclidean mathematics: logicism and formalism. 
 

The failure of Euclidean epistemologies 
 
According to the logicist philosophers (primarily Gottlob Frege and the young 
Bertrand Russell), the evidence for the axioms of mathematics arises from logical 
intuition. In other words, the axioms are logically true statements (or theorems of 
logic), and their negations are self-contradictions. In this case, infallibility of the 
axioms is given on the same basis as the validity of deduction (i.e. the power of 
logic), and since logic has some intimate relation to the nature of thinking, 
mathematics is therefore unquestionably true. 
 
But the failure of the logicist programme became obvious soon after its birth, and 
ironically it was one of its partisans, Russell, who put his finger on the incurable 
disease (the Russell-paradox) in Frege’s formal system. “Logical intuition”, from 
which they intended to derive the validity of mathematics, and which is given its 
theoretical shape by naïve set theory, is inherently inconsistent. While consistency can 
be reached by substituting naïve set theory with axiomatic set theory, this new formal 
shape will be far from representing any infallible logical intuition8, so it means the 
betrayal of the logicist programme. 
 
The next (and, according to Lakatos, hopefully the last) attempt at establishing a 
Euclidean framework for mathematics was David Hilbert’s formalist programme. If 
the failure of the logicist programme was due to inherent inconsistencies, the main 
task is to ensure consistency for mathematics. The formalist philosopher therefore 
identifies mathematical theories with purely formal syntactical systems (calculi) that 
have to satisfy two main conditions: (i) the calculus must be consistent9, and (ii) it 
must be complete with respect to negation, that is, one must be able to either prove or 
refute every theorem composed in it (found true or false by ‘intuitive’, less formal 
methods). 
 
Lakatos dates the failure of this programme to 1931, when Kurt Gödel’s two 
incompleteness theorems proved that both of the formalist programme’s criteria are 
untenable: there can be no formal theory (strong enough for mathematical purposes) 
which is syntactically complete; and none of these theories can prove its own 
inconsistency (so there is no provably inconsistent basic theory to which the 

                                                 
8 Some axioms of the Zermelo-Fraenkel set theory (or any other axiomatics of set theory) are far from 
being ‘obviously true’, and their validity (like in the case of the axiom of choice) was debated for 
decades in the first half of the century. 
9 One could say that consistency substitutes the requirement of truth – so the formalist programme is 
not a purely Euclidean epistemology for mathematics, but it is in the sense that its main methodological 
notion is proof.  



consistency of all other theories could be reduced). Lakatos admits that this failure is 
not acknowledged yet by most of mathematicians, and they try to cure the disease in 
metalogics, proof theory and other fields; but he maintains that every attempt of this 
kind can be shown to transcend the original (finitist) limits of Hilbert’s programme.10 
Intuitions about consistency and completeness are inadequate to substantiate a 
Euclidean philosophy of mathematics. 
 
Instead of discussing further and less important attempts and failures, Lakatos draws 
the historically based conclusion (which is not logically strict, but is demonstrated by 
the preceding considerations) that mathematics is not a Euclidean science. This 
means, on the one hand, that mathematics is not infallible: we were not able to find a 
mechanism that ensures the necessary truth of the axioms. It also means, on the other 
hand, the mathematics is not purely demonstrative: the axioms cannot carry the 
required authority that would make the method of proof credible – indeed, we often 
look for the suitable axioms in order to ensure the validity of certain theorems we 
want to prove. (Modifying or abandoning the basic statements is refutation, the 
epistemological opposite of proof.) Finally, mathematics cannot be purely formal, 
since formal systems cannot live up to the basic expectations we want to raise for 
them. 
 

The marriage between philosophy and history of mathematics 
 
After this brief historical account we can see that attempts at prescribing for 
mathematics what it should be like, or how it should work in the ideal case, turned out 
to be illusory. Philosophy of mathematics has to start from describing mathematics as 
it is. For this, philosophy has to “wed” the history of mathematics: it has to look at the 
real events to find there the method of progress, the method which succeeds in 
bringing about the growth of mathematical knowledge11. This idea is expressed by the 
famous thesis: “The history of mathematics, lacking the guidance of philosophy, [is] 
blind, while the philosophy of mathematics, turning its back on the most intriguing 
phenomena in the history of mathematics, is empty.”12 
 
The second part of the above statement can be easily explained by what we have 
already seen: every philosophy that does not consider the history of its own subject 
fails to grasp anything, since it will not understand the basic working mechanism of 
the subject field.13 However, the first part of the thesis is much more problematic, 
since not many historians will admit that historical research cannot proceed without 
using a philosophical framework. But Lakatos does not acknowledge the existence of 
philosophically unbiased historiographies: according to his view, when historians of 
science turn to the actual historical events, they already have a preconception of what 

                                                 
10 One example is the Gentzen-type consistency proof for arithmetic based on transfinite induction.  
11 See above Hegel’s influential role in Lakatos’s thinking. 
12 This is actually a paraphrase of Immanuel Kant’s thesis on the relation between intuition and 
intellect. Lakatos expressed the same view for the case of science (and not of mathematics), and he put 
this as the starting sentence of one of his most important papers on the philosophy of science (“History 
and its Rational Reconstructions”). 
13 In the same years when Lakatos expressed this view, a very similar claim was formed by Thomas 
Kuhn, historian of science, and today there is hardly any philosopher of science who will not grant the 
validity of this requirement. 



constitutes the nature of the given discipline. The set of historical data is too large and 
confused to be handled, with no intrinsic system or method in them, so we need to 
have certain preconceptions and biases: historians unavoidably give rational 
reconstructions of the actual history. Granted this, instead of trying to get rid of 
preconceptions (which is impossible) we must consciously dwell on this point and, 
with our historical research, we should aim the question: ‘What is (this) science?’14. If 
philosophy is inevitably present in the history of science, then we should make use of 
it.15 
 
What we first see, having a look at the history of mathematics after this analysis of the 
formalist school’s failure, is that mathematical theories are not given to us as formal 
calculi. Instead, formal calculi are built by mathematicians in order to strictly 
conceptualise informal theories. There is always an informal theory prior to the 
formal system, and the nature of this vague theory is cleared up exactly by fixing the 
formal frame. Moreover, this formalisation process is the very mechanism of 
mathematical discovery: the growth of mathematical knowledge is achieved by 
building formal accounts of the informal intuition. Concerning epistemology again, 
the truth of mathematical theories is therefore reduced to the truth of these informal 
theories, but this second question is not answered by Lakatos in one unique traditional 
way. Abstraction from experience; intellectual view of the realm of eternal Platonic 
entities; the intuition given by the conceptual construction of objects – all these 
accounts can be used (changing from case to case) when assigning truth to the 
informal theory captured. But the philosophy of mathematics is not concerned with 
this question, but rather with the way in which this fixed system of formal concepts is 
established, with the process that leads from conjectures to knowledge. This 
philosophy is not epistemology but methodology, or heuristics. 
 

The method of proofs and refutations 
 
Lakatos’s most important writing on the philosophy of mathematics is Proofs and 
Refutations, a series of articles (later published as a book) that he extracted from his 
(second) doctoral dissertation entitled Essays on the Logic of Mathematical Discovery 
(Cambridge, 1961). The main part of this work is a case study,  a ‘rational 
reconstruction’ of a historical process which, according to the author, is excellently 
suitable for illustrating the growth of mathematical knowledge. This process is the 
18th-20th century development of polyhedrons. The ‘internal history’ (or rational 
reconstruction) is supplemented with an ‘external history’ (the series of real historical 
events) given in footnotes.16 The main steps of the general process are the following 
(see Fig. 2): 
 

                                                 
14 Or even: ‘What is (scientific) rationality?’ 
15 The concept of “rational reconstruction” brought about lively debates, and even today it is very often 
scorned and persecuted among historians. The general discussion of this notion would lead us out of 
the field of history of mathematics, and would require a detailed analysis of Lakatos’s philosophy of 
science. 
16 In “History and its Rational Reconstructions” Lakatos expresses his idea for all historiographies of 
science that it is a good way to write history when the reconstruction composes the main text, while the 
real history is given in footnotes. This is the only case (anticipating his later idea) when he follows his 
own advice.  
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Figure 2 
 
1. Naïve conjecture. Mathematical research always starts from a problem (and it 

should be noted that always ends in a problem too). The problem is the intuitive 
recognition of some regularity or connection that cannot be expressed within the 
well-defined, formal bounds of existing theories. Therefore, the expression of the 
naïve conjecture does not entail the possibility of proof: we need a formal theory 
in which the statement can become a proven theorem. (The sources of this 
‘recognition’ can be various and contingent, and they are not interesting for the 
philosophy of mathematics – as we observed when we dispensed with 
epistemology.) In the examined case, this recognised regularity is the Descartes-
Euler conjecture, i.e. for every polyhedron, the number of vertices plus the 
number of faces minus the number of edges equals 2. 
 

2. Proof analysis. The purpose now is to build a formal theory in which the naïve 
conjecture can be expressed precisely and proved by means of deduction. First we 
give a ‘naïve’ proof for our statement, an ‘intuitive’ demonstration of its general 
validity. In our case this demonstration is Cauchy’s argument: seeing the 
polyhedrons as rubber sheets, if we imagine that we cut them along one of the 
edges and stretch them flat, we can ‘see’ that the statement is true. But the 
community of mathematicians will abuse the looseness of this ‘rubber sheet’ 
notion of polyhedrons, and they will easily come up with counterexamples: cases 
for which the conjecture does not hold. All criticisms and counter-criticisms 
become vital now, they are the engines of the evolution of theories.17 

                                                 
17 The role of criticisms was emphasised by Karl Popper as being essential to the rationalist attitude. 
For Lakatos, who does not admit the existence of any fixed scientific method of rationality, this role of 
criticisms and the rationalist attitude become even more indispensable. 



 
Counter-examples can be divided into two main groups: local and global counter-
examples.18 Local ones are those that do not refute our ‘theorem’ in general, they 
only refute one of the ‘hidden lemmas’ we unconsciously included in the 
formulation of our theorem. In this case we substitute the ‘guilty lemma’ with 
another one which now excludes the validity of the counter-example. Global 
counter-examples, on the other hand, are the ones that do refute our initial 
theorem. However, we do not throw away our theorem and its proof, but we 
modify the concepts and notions involved, or make it more precise what the 
statement is about (e.g. what polyhedrons are). 
 
In this way, through the dialectical interaction of proofs, refutations and proof 
analyses, a formal system of precise concepts is gradually created, and this will 
shape a new formal mathematical theory.19 
 

3. Deductive theory. Finally, the ‘research programme’ ends in the new formal 
theory. All the meanings of terms are fixed within the axiomatic system, and 
many theorems (probably including the original one) can be deduced. (In our case 
study, the new theory is the axiomatic system of algebraic topology – see Proofs 
and Refutations.) In this last stage, the mathematical activity is reduced to ‘puzzle 
solving’20 (which theorems can be proven in the theory), and no exciting problem 
will emerge. For the formailst philosophy of mathematics, this is the only 
interesting, real form of mathematical activity – for Lakatos, this is the most 
boring and least interesting one. 

 
It is worth noting that, according to Lakatos, the same scheme of development can be 
shown in the case of ancient Greek mathematics as well, for the evolution of 
geometry from Thales to Euclid.21 And, more even interestingly, Lakatos argues for 
the validity of this scheme for the birth of modern physics: from Kepler’s ‘naïve 
conjectures’ (which were not provable within any existing physical theory at the time 
of their recognition) to Newton’s axiomatic foundation of mechanics. There are some 
signs, as we mentioned in the Introduction, that, in the last few years of his life, 
Lakatos did not see mathematics and natural sciences different, neither in 
methodology nor in subject – but, unfortunately, for the explicit formulation of these 
views he had not enough time left before his death. 
 
Turning back to mathematics, we have to mention that this example shown in Proofs 
and Refutations illustrates more than the way in which new formal theories are born. 
It illustrates the very nature of mathematical progress: how proof analytical activity 
helps capture the intrinsic subject. Mathematics is based on proof in the end, when 
one field of interest reaches its final, axiomatic stage: so much should be granted for 
the formalist school – but then this field becomes empty and dead. The introduction of 
the historical dimension of mathematics serves the purpose of seeing mathematics as a 
progress: in philosophy, what we are interested in is not the formal features of 

                                                 
18 For illustrations of the following cases, see Proofs and Refutations itself. 
19 During the evolution of this ‘research programme’, the ‘hard core’ is determined and the ‘positive 
heuristics’ of the programme is activated – see Lakatos’s terminology for the philosophy of science, 
which he partly applied to the philosophy of mathematics as well.  
20 This term is borrowed by Lakatos from Thomas Kuhn. 
21 He refers to his former teacher and friend, Árpád Szabó, the well-known historian of mathematics. 



knowledge, but rather the growth of knowledge. As Lakatos emphasises: in 
mathematics, all growth in rigour is transformed to be a growth in content22; that is, 
every criticism that increases the strictness of methodology and terminology in one 
question, also increases the range of our knowledge and understanding available for 
scientific (i.e. deductive) methods. 
 

Conclusion 
 
It seems very likely that the originality and the deep insights in Lakatos’s philosophy 
are partly due to his very diverse and varied training: from a Hegelian-Lukacsian 
philosophy to Cambridge’s formal analytical way of argumentation, he received very 
different influences during his academic life. These formally contradicting views gave 
birth to very live and efficient ideas in his philosophy, though he never took the 
chance to clarify a final, complete philosophical system – something that he put aside 
as uninteresting in case of mathematical theories. It is rather the approach than the 
actual statements that should be valued highest among all that we inherited from his 
ideas: the emphasis on the historical dimension; the devotion to development and 
progress; and the attempt to see mathematics not as a formal thing that is alien to us 
but as it is worked by mathematicians. He brought down mathematics from its 
supposedly given divine perfection to the realm of human beings who are responsible 
for the achievement of an ever higher degree of its perfection – which is, as it seems 
to be, a Copernican revolution in the philosophy of mathematics. 

                                                 
22 He connects this process to the ‘cunning of Reason’ – an important notion for Hegel. 


