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My subject is the relation of classical and quantum mechanics in the light of general philosophical principles of correspondence and incommensurability or with other words the question "Correspondence or incommensurability?" in the light of the classical limit of quantum theory. First I'll give a short account of the correspondence principle in the history and textbooks of quantum mechanics, then I'll show a generalization of the correspondence principle. Comparing it with the incommensurability thesis I suggest to differentiate four levels for the possible analysis.








Correspondence principle in the history and textbooks of quantum mechanics





Let's start by the historical order with the correspondence principle which has several forms in quantum mechanics. Max Planck showed as early as 1906 that in the limit � EMBED Equation.2  ��� quantum theoretical conclusions converged toward classical results: "the classical theory can simply be characterized by the fact that the quantum of action becomes infinitesimally small"� From 1913 Niels Bohr formulated a new version of the principle, according to which for large (� EMBED Equation.2  ���) quantum numbers one should recover classical results.� The result of the development of this form - the quantization rule - had an important heuristic role in the old quantum mechanics and in the discovery of matrix mechanics, too. The principle that t�= _Ñ) quantum numbers one should recover classical results.2 The result of the development of this form - the quantization rule - had an important heuristic role in the old quantum mechanics and in the discovery of matrix mechanics, too. The principle that �he formalism of Hamiltonian mechanics should be preserved in quantum mechanics with the modification that the physical quantities are to be represented by non-commuting operators has a similar role in the science today, as well.


	In physics textbooks all of these three forms are used, usually without any criticism. Planck's formulation is often used of course in the discussion of blackbody radiation or in the more general case of the derivation of Hamilton�Jacobi equation. Perhaps the best Hungarian textbook on quantum mechanics was written by György Marx more than 25 years ago.� In the Appendix he substitute � EMBED Equation.2  ��� in the state equation





� EMBED Equation.2  ���





of quantum mechanics and after division by y he obtains





� EMBED Equation.2  ���





which in the limit � EMBED Equation.2  ��� leads us to the Hamilton–Jacobi equation, that is from the quantum mechanics to the classical mechanics, where the latter is an approximation of the former.


	Bohr's formulation generally is used for the hydrogen atom. Another Hungarian textbook for teacher training courses on quantum mechanics by Károly Nagy� presents the transition from the n state to the n' state when n and n' are very large principal quantum numbers and the difference � EMBED Equation.2  ��� is small. In this case the following equalities and the final approximation are hold:
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The classical frequency is � EMBED Equation.2  ���. Thus for large quantum numbers the frequency of transition � EMBED Equation.2  ��� is the same as the classical, the frequency of transition � EMBED Equation.2  ��� is twice the classical frequency and so on. Consequently for large quantum numbers the quantum theoretical frequencies go to classical frequencies.


	For the third form of correspondence principle in quantum mechanics I want to show a fragment of "Fundamentals of Quantum Mechanics" by Vladimir Fock�. Fock puts the question "How do we find the operator for a given physical quantity?" He introduces the canonical variables for classical mechanical systems, and defines canonically conjugate variables with the help of the Poisson bracket. Starting with Hamilton's canonical equations of motion he constructs the
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classical Poisson bracket for the function H and F, where H is the Hamiltonian and F is a certain function of coordinates, momenta, and time. Then he lists the usual properties of the Poisson bracket. The Poisson brackets
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serve for him as a definition of canonical conjugate coordinates and momenta in classical physics. Referring to Bohr's correspondence principle he mentions Dirac's assumption that the quantum Poisson bracket of any two noncommutative operators possesses all the properties of classical Poisson bracket. For this requirements he derives that
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for any two operators F and G, where c is an operator that commutes with any other operator, that is c is a constant and it can be written in the form � EMBED Equation.2  ���, where h' is real. h' must have the dimension of action and comparing with the results of experiments � EMBED Equation.2  ���. You see that this mere formal presentation of the quantization process is based on the assumption that the algebra of quantum commutators is isomorphic to the algebra of classical Poisson brackets. So these were the modern uses of the different original forms of correspondence principle.








Generalization of the correspondence principle





The correspondence principle was firstly exploited systematically by Bohr in relation to quantum theory, the rule had been employed - as I mentioned - earlier by Planck and also in checking special and general relativity theory. Soon it was intended to be a general principle. In his paper Hans Radder summarizes four accounts of the generalized correspondence principle. Let me present a fifth one (it is possible to collect even more, but not for this paper). Ivan Vasilyevich Kuznetsov (1911-1970) originally was a physicist, but he showed great activity in the area of history and philosophy of science and he had strong influence to the research of methodology in the Soviet Union. He published a little book in 1948, in which he gave a survey on the history of correspondence principle and pointed out that it held in several physical and non-physical disciplines.� In his formulation the principle of correspondence is the following: "The empirically confirmed theories will not disappear as false with the appearance of the new, more universal theories, but they preserve their importance as the limiting or special case of the new theories."








The incommensurability thesis





All this stuff seems to be in an obvious contradiction with Kuhn's or Feyerabend's conception of incommensurability known from the sixties. According to Kuhn the scientific revolution - and the birth of quantum mechanics was a revolution by almost all of the authors - results not only a new theory, but changes the field of scientific problems, research methods and the conceptual apparatus, the whole world of the given discipline. This is the incommensurability. Feyerabend gives examples of incommensurability when the new theory is incommensurable with the old one in the same area of reality. It is well�known, that Bohr himself was convinced of the incommensurability (but of course it is not his notion) of classical and quantum concepts. So to defend the correspondence principle one have to show much caution. One of the most resolute author I know in this subject is Erhard Scheibe, who reexamined the historical examples by Feyerabend, tried to correct the notion commensurability and concluded that "besides the fact of incommensurabilities, there is the other fact of concept�by�concept-correspondence accompanied by the possibility of numerical approximations."�


	Another author, the American Fadner states that the correspondence principle has a strong basis in scientific theories from Newton to Watson and Crick. By Fadner's opinion the correspondence principle holds not between theories but instead between the operational equations of the new and old theories. He speaks about term correspondence as well, but it is not the same as meaning invariance. Like Scheibe, Fadner also can accept certain changes in the meaning of physical concepts.�








Levels of possible analyses





We can see that in the debate the authors are speaking about for instance numerical approximations, operational equations and concepts which may differ in their relations to correspondence or incommensurability. Hans Radder in the analysis of the history of Bohr's correspondence principle differentiates the numerical correspondence or agreement, the conceptual continuity and the formal correspondence. I support four level for the analysis of correspondence and incommensurability in quantum mechanics. As I see the analysis haven't been done yet, I want to make some comment only concerning this levels.


	On the level of experiments it is an evident requirement by all of the physicists that the measurement data must be in correspondence in different theories of the same phenomena. But don't forget the followings: in the modern physics there are no measurements without some kinds of theories, the measurement is possible with a certain accuracy only and the different theories usually concerns different domains with a little intersection. So this correspondence requirement is indispensable but rather weak. There can be many theories which are in correspondence in this sense, so it can't be effectively used for checking the new theories.


	The second level is the mathematical equations or formulas for physical quantities. The firstly mentioned historical and contemporary technics are mainly in this level. But the correspondence in this level is not so simple as you can see in textbooks. For instance in my first example cited from the book by György Marx according to Nathan Rosen's paper from 1964 the quantum potential not vanishes in all of the cases�.


	There are similar troubles with the large quantum number states, as well. For instance two South American physicists showed that in the case of a simple superposition of a few eigenstates of the ordinary one�dimensional harmonic oscillator results quantum effects for arbitrary large values of the principal quantum number.� They found differences between the quantum limit and classical solutions for probability density and for correlations in space, as well. Perhaps the results by Richard Liboff are the best known.� He examined periodic systems - like rectangular well - whose increments in quantum energy grew with increasing quantum number and in some of the cases in the limit of large quantum numbers frequency correspondence is not kept. He must pass further to the limit � EMBED Equation.2  ��� to secure the classical continuum. In his footsteps for instance two American physicists suggest a synthesis of the Planck and Bohr formulations of the correspondence principle.�_ For the harmonic oscillator, the particle in the box, and hydrogen atom they show that in order to have meaningful classical limits for eigenvalues of quantum mechanical observables, it is necessary to take the double limit as both the Planck constant goes to zero and the quantum number goes to infinity. I finish the level of equations with the note that some of the authors, like the Hungarian Imre Fényes or the German Ulrich Hoyer, state that the quantum mechanical expression in the limit cases go not to the equation of the classical mechanics, but to the classical statistical physics.


	The third level contains the abstract mathematical models and their features. This is the meta-level of the previous one, and says something on the characteristics of the equations or formulas. In this level - it seems to me - the incommensurability is emphasized in the literature. Remember such qualitative differences than functions in classical mechanics and operators in quantum mechanics (which doesn't mean of course that it is impossible to give an operator formulation for classical mechanics), the non-commutativity in Hilbert-space formalism or in other operator algebraic approaches, the distributivity and non-distributivity difference in the lattice theoretical model of classical and quantum physics. As we know there are no meaningful manipulations which in limit case bring a non-distributive lattice to a distributive one.


	On the fourth level there are theoretical concepts of classical and quantum mechanics. I think in this level the problem of correspondence and incommensurability has no specifics in quantum mechanics compared with other sciences or with the general debates in philosophy of science. As I see everybody accepts the meaning variance especially Bohr for instance, but only within certain bounds. I have mentioned Scheibe and Fadner in our area, but there are many other authors in different disciplines who speak about relative continuity of concepts in science, as well.


	So the conclusion is that nor the correspondence nor the incommensurability has a priori power in physics, and in a given problem you have to examine their success level by level.








Notes








�						P. Szegedi





Correspondence or Incommensurability?				�








�   M. Planck, The Theory of Heat Radiation (Dover, New York 1959) p. 143. The original German edition was published in 1906.


�   The detailed analysis of the development of this form you can find in Hans Radder, Heuristics and the Generalized Correspondence Principle, The British Journal for the Philosophy of Science 42 (1991), 195-226.


�   Gy. Marx, Kvantummechanika (Mûszaki Könyvkiadó, Budapest 1971).


�  K. Nagy, Kvantummechanika (Tankönyvkiadó, Budapest 1978).


�  V. A. Fock, Fundamentals of Quantum Mechanics (Mir Publishers, Moscow 1978).


�  B= D= Repytwjd+ Ghbywbg cjjndtncndbz d cjdhtvtyyjq abpbrt b tuj abkjcjacrjt pyfxtybt !Ujcnt[bplfn+ Vjcrdf 1948@ in Russian.


�  E. Scheibe, Conditions of Progress and the Comparability of Theories, in R. S. Cohen et al. (eds.), Essays in Memory of Imre Lakatos (Reidel, Dordrecht 1976) p. 567.


�  W. L. Fadner, Theoretical support for the generalized correspondence principle, American Journal of Physics 53 (1985) 829-838.


�  Am. J. Phys. 32 (1964) 579.


�  C. G. Cabrera-Miquel Kiwi, Physical Review A 36 (1987) 2995-2998.


�  R. L. Liboff, Foundations of Physics 5 (1975) 271-293.


�  G. Q. Hanonn-D. H. Kobe, Am. J. Phys. 57 (1989) 658-662.








