The History of the Stochastic Interpretation of Quantum Mechanics. From Hungary to Mexico











Péter Szegedi





Department of History and Philosophy of Science


Eötvös University


Budapest, Pázmány Péter sétány 1/A


H-1117 HUNGARY


pszegedi@caesar.elte.hu




















	In the 1930s certain similarities were discovered between the equations of classical statistical mechanics and the Schrödinger equation. From such discoveries arose the stochastic interpretation of quantum mechanics, which was started on its way — as an up to this time working school — by Imre Fényes. He was born in 1917 at Kötegyán (a village on the Hungarian border) and already in 1945 he is a professor and head at the Institute of Theoretical Physics in Bolyai University, Cluj (town in Rumania). In 1950 he came to Hungary as a professor and head in Department of Theoretical Physics at Debrecen. Since 1953 he was working in Department of Theoretical Physics at the Eötvös Loránd University, Budapest.


	He began his scientific works with the analysis of the relations of statistical physics and quantum mechanics, and this was that led him to the subject we are interested in. But we must note that later the main part of his activity was shown on the area of (irreversible) thermodynamics, and in many cases he discussed the philosophical problems of physics, too.


	In our point of view it is relevant not only his 1952 paper — fitting to the second wave of deterministic efforts in quantum mechanics — but already his short communiqué in 1946�. In this paper for the characterization of stationary states he introduces instead of the inappropriate (because of the Heisenberg uncertainty relations) position and momentum their probability distribution, and takes a great number of systems, considering them a fictive, ideal gas without collisions. In a usual ideal gas in consequence of collisions there is a relation similar to the Heisenberg uncertainty relation, and based on this similarity Fényes substitutes this relation in the fictive case with Heisenberg’s one. Than taking into consideration the law of great numbers (that is the density of the fictive gas proportional to the probability distribution of one particle) from the total current vector he gets the “energy density” of the particle at a given potential. With a variable substitution, corresponding de Broglie’s earlier guidance formula or Bohm’s later formulae, he obtains the Schrödinger equation for stationary states.


	Later Fényes definitely examines the probability theoretical foundations of quantum mechanics. He published his famous paper in 1952�. In the introduction he states “the deeper investigation shows us, that there is no any difference between the statistical apparatus of classical physics and wave mechanics. We shall see that all of peculiarities distinguishing quantum mechanics from classical physics are the consequence of statistical method, and it can be traced all of differences between classical and quantum physics back to this method.” Fényes presents the probability theory of Markov-processes, works out the generalized form of Fokker equation. He proves that diffusion processes have a non-commutative property in generalized co-ordinates and stochastic velocity components. In this way it becomes possible to use procedures analogous to quantum mechanics, to derive uncertainty relations for instance. He introduces as special cases the continuity equation of quantum mechanics and the Heisenberg uncertainty relations. Moreover he expounds that the von Neumann theorem on the impossibility of hidden variables is due to the method, as well, and it is not relevant, because the demonstration also can be given for the diffusion processes, where we know that there are hidden variables. Apart from the fact that he restores the original status of causality, Fényes shows that the uncertainty relations are not connected with the measurement. (Heisenberg’s answer: Fényes can’t suggest more precise measurements then the uncertainty relation allows us�.) Fényes tries to base the formal analogies with the supposition, that the electron has a greater number of degrees of freedom then we know.


	It is to be remarked, that Fényes — as in the same time Bohm — couldn’t be satisfied with the reception of his theory, and perhaps this is the reason why later to a certain extent he gave up his work in this line. In 1954 he mentions his concrete trials�, but in 1959 already doesn’t, while he upholds his principal views�. He distinguishes two parts within the quantum mechanics. The mathematical and successful part is the “abstract” quantum mechanics, and the other is the “graphic”, “descriptive” quantum mechanics, which contains for instance the principle of complementarity and the interpretation of Heisenberg relations. According to him the dominant philosophy of this latter part is the physical idealism. In his 1966 writings Fényes already essentially accepts the importance of von Neumann theorem, but he upholds that the uncertainty relations and the principle of complementarity are not the laws of exact quantum mechanics, but they reflect to the insufficiency of the classical particle and wave concepts for the exact characterization of properties�.


	Fényes’s work on the area of stochastic interpretation in a certain sense was continued by Walter Weizel� at the Institute of Theoretical Physics, Bonn in 1953, and further developed by Friedrich Arnold Bopp. Not much later the investigations on statistical electrodynamics got as far as it was striking for instance the quantum mechanical behavior of the oscillator in random electromagnetic field�. Later the interpretation developed on this line, too, but first in 1964 David Kershaw, a graduate student at the Harvard, reviewed and refined the ideas of Fényes and Weizel for stationary states. In 1966 a mathematician of the Princeton University, Edward Nelson derived the Schrödinger equation from Newtonian mechanics via the hypothesis that every particle of mass m is subject to a Brownian motion with diffusion coefficient h/2m and no friction.� The physical interpretation is entirely classical, particles have continuous trajectories, and the wave function is not a complete description of the state. According to Nelson “the departure from classical physics produced by the introduction of quantum mechanics forty years ago was unnecessary”. He writes on Fényes: “The theory which we have developed is just the Fényes-Weizel theory from a different point of view.” Independently from Nelson similar results were obtained by the stochastic electrodynamics (Marshall, Surdin, Boyer).


	As we see, one of the central persons in the development of this interpretation is Louis de la Peña-Auerbach in Mexico. Following Fényes’s footstep he deduced the Schrödinger equation from the theory of Markov processes, from the Fokker-Planck equation. He investigated both side of the problem, namely how can be the Brownian motion treated by Schrödinger-like equations, and how can we give account of the quantum mechanical motion by classical trajectories and random forces. Considering the statistical interpretation of quantum mechanics de la Peña’s opinion is similar to Fényes’s one, namely that the quantum mechanics is not a strictly statistical theory, because the Heisenberg inequalities preclude the existence of quantum mechanical phase-space distributions. The better interpretation, the “stochastic quantum mechanics — de la Peña writes — was born 25 years ago with a paper by Fényes.”� But according to de la Peña the stochastic quantum mechanics is only a phenomenological theory without trying to explain the stochasticity of the electron. The consistent theory is the stochastic electrodynamics (SED)�.


	The equations of SED are nonlinear ones and thus they are not exactly identical with the Schrödinger equation. The mathematics of the nonlinear equations is rather difficult. Despite from this fact de la Peña and his coworkers could explain the electron spin� and other magnetic features and they had other successes for instance in solving the problems of stable atoms, repeated measurements, etc.� In this way the Mexican school has the most developed version of the stochastic interpretation of quantum mechanics.�
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