
4 The subjective theory

So have I heard and do in part believe it.
(Shakespeare, Hamlet: I, i, 166)

The subjective theory of probability was discovered independently and at about
the same time by Frank Ramsey in Cambridge and Bruno de Finetti in Italy. Such
simultaneous discoveries are not in fact uncommon in the history of science and
mathematics. Usually, however, although the independent discoverers share a
common set of ideas, their treatments of the subject differ both in details and in
general approach. These differences are of considerable interest, since they illustrate
some of the possible variations in the theory. A detailed comparison of the views
of Ramsey and De Finetti has recently been published by Galavotti (1989, 1991,
1994) in an important series of papers. In the course of expounding the subjective
theory, I will discuss at various points some of these differences between Ramsey
and De Finetti.

The existence of simultaneous discoveries is not perhaps so surprising. Usually
there is a problem situation in the subject, and the discoverers react to this by
producing somewhat similar solutions. We have seen in the previous chapter
that by the mid-1920s there were many severe problems in the tradition of logical
Bayesian which went back to Bayes and Laplace. Some statisticians (notably
Fisher and Neyman) and some philosophers of science (notably Popper) reacted
to this by rejecting Bayesianism altogether. However, another approach was to
devise a new version of Bayesianism which overcame the difficulties of logical
Bayesianism. This was what Ramsey and De Finetti achieved with their new
subjective approach to probability.

Since Ramsey’s key paper is usually referred to as Ramsey (1926) and De
Finetti’s earliest publications have later dates, it may appear that Ramsey is the
first discoverer and that De Finetti hit on the same idea rather later. This impression
is somewhat misleading, however. Ramsey’s paper ‘Truth and Probability’ was
written in 1926, and a large part of it read to the Moral Sciences Club at
Cambridge, but it was not actually published until 1931. Ramsey died at the age
of only 26 in 1930, having made major contributions to the foundations of
mathematics, the philosophy of probability, mathematical logic and economics.
His paper on probability first appeared in the collection published after his early
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death in 1931. De Finetti says that already by April 1928 he had written a complete
exposition of the foundations of probability theory according to the subjective
point of view. This may have been a little later than Ramsey, but De Finetti was
the first to publish (1930a, b, c). In 1931 De Finetti (1931a) gave a full account
of the philosophical aspects of the theory without formulas in his ‘Probabilism’,
and provided more details about the mathematical foundations in his 1931b paper.
Ramsey certainly never heard of De Finetti, and De Finetti seems not to have
read Ramsey until after 1937, when his own views had been completely developed
[see his new footnote (a) added in 1964 to 1937:102]. Thus, the discovery was
completely independent and occurred at almost the same time.

Ramsey’s relation to the older logical tradition is very clear, since he introduces
his new theory by giving detailed criticisms of Keynes’s views. De Finetti,
however, does not appear to have been influenced by Keynes at the time when he
devised the subjective theory. Indeed in his 1931a paper, he seems to be doubtful
about what exactly Keynes’s views were, remarking in a footnote: ‘This seems
to me to be Keynes’s point of view; but I cannot judge well, since I have only
been able to skim his essay quickly.’ (1931a:221). Later, De Finetti expounds
and criticises Keynes’s views, and remarks in a footnote: ‘I briefly saw Keynes’s
book in 1929 (and I quoted it in ‘Probabilismo’ ... 1931 ...), understanding little
of it, however, because of my then insufficient knowledge of English. This year
I have read the German version’ (1938:362, Footnote 18). It thus seems clear
that De Finetti properly studied Keynes only after his own views had been fully
developed. It is also interesting to note that De Finetti’s 1938 paper is entitled
‘Cambridge Probability Theorists’; he mentions only Keynes and Jeffreys, but
not Ramsey. This indicates that he probably only read Ramsey after 1938. In the
light of all this, I will begin the next section with Ramsey’s criticisms of Keynes,
since these follow on naturally from the previous chapter. However in the section
‘Some objections to Bayesianism’ I will give some consideration to De Finetti’s
different route to subjective probability. The remaining sections will expound
the subjective theory itself. ‘Subjective foundations for mathematical probability’
shows how the mathematical theory of probability can be developed on the
subjective approach, and, in particular, gives a full proof of the all important
Ramsey–De Finetti theorem. ‘Apparently objective probabilities in the subjective
theory’ introduces the key notion of exchangeablility, which, as we shall see,
plays a most important rôle in the theory. Both these sections are largely based
on De Finetti (1937), which is my own preferred account of the theory. However,
I will introduce a few changes and amplifications for the sake of clarity and will
also mention some alternatives to be found in Ramsey and in De Finetti’s later
work. ‘A comparison of the axiom system given here with the Kolmogorov
axioms*’ and ‘The relation between independence and exchangeability*’ cover
some rather mathematical points, and in another section I will present my criticism
of De Finetti’s exchangeability reduction.
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Ramsey’s criticisms of Keynes1

According to Keynes there are logical relations of probability between pairs of
propositions, and these can be in some sense perceived. Ramsey criticises this as
follows:

But let us now return to a more fundamental criticism of Mr. Keynes’ views,
which is the obvious one that there really do not seem to be any such things
as the probability relations he describes. He supposes that, at any rate in
certain cases, they can be perceived; but speaking for myself I feel confident
that this is not true. I do not perceive them, and if I am to be persuaded that
they exist it must be by argument; moreover I shrewdly suspect that others
do not perceive them either, because they are able to come to so very little
agreement as to which of them relates any two given propositions.

(1926:161)

This is an interesting case of an argument which gains in strength from the nature
of the person who proposes it. Had a less distinguished logician than Ramsey
objected that he was unable to perceive any logical relations of probability, Keynes
might have replied that this was merely a sign of logical incompetence, or logical
blindness. Indeed Keynes does say: ‘Some men – indeed it is obviously the case –
may have a greater power of logical intuition than others.’ (1921:18). Ramsey,
however, was not just a brilliant mathematical logician but a member of the
Cambridge Apostles as well. Thus Keynes could not have claimed with plausibility
that Ramsey was lacking in the capacity for logical intuition or perception – and
Keynes did not in fact do so.

Ramsey buttresses his basic argument by pointing out that, on the logical theory,
we can apparently perceive logical relations in quite complicated cases, while being
quite unable to perceive them in simple cases. Thus he says:

All we appear to know about them [i.e. Keynes’s logical relations of
probability] are certain general propositions, the laws of addition and
multiplication; it is as if everyone knew the laws of geometry but no one
could tell whether any given object were round or square; and I find it hard
to imagine how so large a body of general knowledge can be combined with
so slender a stock of particular facts. It is true that about some particular
cases there is agreement, but these somehow paradoxically are always
immensely complicated; we all agree that the probability of a coin coming
down heads is 1/2, but we can none of us say exactly what is the evidence
which forms the other term for the probability relation about which we are
then judging. If, on the other hand, we take the simplest possible pairs of
propositions such as ‘This is red’ and ‘That is blue’ or ‘This is red’ and ‘That
is red’, whose logical relations should surely be easiest to see, no one, I
think, pretends to be sure what is the probability relation which connects
them.

(Ramsey 1926:162)
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Ramsey’s doubts about basing probability theory on logical intuition are reinforced
by considering how logical intuition fared in the case of deductive inference,
which is surely less problematic than inductive. Frege, one of the greatest logicians
of all time, was led by his logical intuition to support the so-called axiom of
comprehension, from which Russell’s paradox follows in a few lines. Moreover, he
had companions in this error as distinguished as Dedekind and Peano (for citations,
see Gillies 1982: 92). Hilbert and Brouwer were two of the greatest mathematicians
of the twentieth century. Yet Hilbert’s logical intuition informed him that the Law
of the Excluded Middle was valid in mathematics, and Brouwer’s that it was not
valid. All this indicates that logical intuition is not to be greatly trusted in the
deductive case, and so hardly at all as regards inductive inferences.

Moreover, is so-called logical intuition anything more than a psychological
illusion caused by familiarity? Perhaps it is only as a result of studying the
mathematical theory of probability for several years that the axioms come to seem
intuitively obvious. Maybe the basic principles of Aristotle’s philosophy seemed
intuitively obvious to scholars in medieval Europe, and those of Confucian
philosophy to scholars in China at the same time. I conclude that logical intuition
is not adequate to establish either that degrees of partial entailment exist, or that
they obey the usual axioms of probability. Let us accordingly examine in the next
section how these matters are dealt with in the subjective theory.

Subjective foundations for mathematical probability: the
Ramsey–De Finetti theorem

In the logical interpretation, the probability of h given e is identified with the
rational degree of belief which someone who had evidence e would accord to h.
This rational degree of belief is considered to be the same for all rational individuals.
The subjective interpretation of probability abandons the assumption of rationality
leading to consensus. According to the subjective theory, different individuals (Ms
A, Mr B and Master C say), although all perfectly reasonable and having the same
evidence e, may yet have different degrees of belief in h. Probability is thus defined
as the degree of belief of a particular individual, so that we should really not speak
of the probability, but rather of Ms A’s probability, Mr B’s probability or Master
C’s probability.

Now the mathematical theory of probability takes probabilities to be numbers
in the interval [0, 1 ]. So, if the subjective theory is to be an adequate interpretation
of the mathematical calculus, a way must be found of measuring the degree of
belief of an individual that some event (E say) will occur. Thus, we want to be able
to measure, for example, Mr B’s degree of belief that it will rain tomorrow in
London, that a particular political party will win the next election, and so on. How
can this be done?

Ramsey has an interesting discussion of this problem. His first remark on the
question is that ‘it is, I suppose, conceivable that degrees of belief could be measured
by a psychogalvanometer or some such instrument’ (1926:161). Ramsey’s
psychogalvanometer would perhaps be a piece of electronic apparatus something
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like a superior lie detector. We would attach the electrodes to Mr B’s skull, and,
when he read out a proposition describing the event E in question, the machine
would register his degree of belief in that proposition. Needless to say, even if such
a psychogalvanometer is possible at all, no such machine exists at present, and we
cannot solve our problem of measuring belief in this way.

Ramsey next considers the possibility of using introspection to estimate the
strength of our belief-feeling about some proposition. However, he has an interesting
argument against such an approach:

We can, in the first place, suppose that the degree of a belief is something
perceptible by its owner; for instance that beliefs differ in the intensity of a
feeling by which they are accompanied, which might be called a belief-
feeling or feeling of conviction, and that by the degree of belief we mean the
intensity of this feeling. This view would be very inconvenient, for it is not
easy to ascribe numbers to the intensities of feelings; but apart from this it
seems to me observably false, for the beliefs which we hold most strongly
are often accompanied by practically no feeling at all; no one feels strongly
about things he takes for granted.

(1926:169)

Ramsey is undoubtedly correct here. When I cut a slice of bread to eat, I believe
very strongly that it will nourish rather than poison me, but this belief, under normal
circumstances, is not accompanied by any strong feelings, or indeed any feelings
at all. Ramsey is thus led to the conclusion that: ‘... the degree of a belief is a causal
property of it, which we can express vaguely as the extent to which we are prepared
to act on it’ (1926:169). I am certainly prepared to act on my belief that the bread
is nourishing rather than poisonous by eating it without hesitation, even though I
am not having any strong feelings at the time.

On this approach we should measure the strength of a belief by examining the
character of some action to which it leads. A suitable action for measurement
purposes is betting, and so Ramsey concludes: ‘The old-established way of
measuring a person’s belief is to propose a bet, and see what are the lowest odds
which he will accept. This method I regard as fundamentally sound’ (1926:172).
De Finetti (1930a) also introduces bets to measure degrees of belief.

Betting is of course just one kind of action to which a belief can lead. Does it
therefore give a good measure of the strength of a belief as regards other sorts of
actions to which a belief might lead? Ramsey defends the assumption that it does
as follows:

... this section ... is based fundamentally on betting, but this will not seem
unreasonable when it is seen that all our lives we are in a sense betting.
Whenever we go to the station we are betting that a train will really run, and
if we had not a sufficient degree of belief in this we should decline the bet
and stay at home.

(1926:183)
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My own view is that betting does give a reasonable measure of the strength of a
belief in many cases, but not in all. In particular, betting cannot be used to measure
the strength of someone’s belief in a universal scientific law or theory (for a
discussion, see Gillies 1988a:192–5). However, let us for the moment accept betting
as a reasonable way of measuring degree of belief and see what this assumption
leads to.

To do this, we must now present some mathematics, but, since the purpose of
this book is to discuss the philosophical aspects of probability, I have tried to keep
this mathematics as simple as possible, and indeed it involves no more than
elementary algebra. We must first set up a hypothetical betting situation in which
the rate at which Mr B is prepared to bet on E (his betting quotient on E) can be
taken as a measure of his degree of belief in E. Then we introduce the condition of
coherence. It will be clear that Mr B ought to choose his betting quotients in order
to be coherent, and this leads to the main result (The Ramsey–De Finetti Theorem),
which states that a set of betting quotients is coherent if and only if they satisfy the
axioms of probability. I will state the axioms of probability in full and then prove
the Ramsey–De Finetti theory for each one. In this way the foundations of the
mathematical theory of probability will be established from the subjective point of
view.

Definition of betting quotients (q)

We imagine that Ms A (a psychologist) wants to measure the degree of belief of
Mr B in some event E.2 To do so, she gets Mr B to agree to bet with her on E under
the following conditions. Mr B has to choose a number q (called his betting quotient
on E), and then Ms A chooses the stake S. Mr B pays Ms A qS in exchange for S if
E occurs. S can be positive or negative, but |S| must be small in relation to Mr B’s
wealth. Under these circumstances, q is taken to be a measure of Mr B’s degree of
belief in E.

A number of comments on this definition are in order. First of all it is important
that Mr B does not know when choosing q whether the stake S will be positive
(corresponding to his betting in favour of the event E occurring) or whether S will
be negative (corresponding to his betting against E). If Mr B knew that S would be
positive, it would be in his interest to choose q as low as possible. If he knew S
would be negative, it would be in his interest to choose q as high as possible. In
neither case would q correspond to his true degree of belief. However, if he does
not know whether S is going to be positive or negative, he has to adjust q to his
actual belief.

We can illustrate this by a hypothetical example from the stock market. Suppose
Mr B is now a jobber, and I want to find out what he thinks to be the value of a
particular share (BP say). If I say to him: ‘I want to sell 100 BP shares, what do
you think their value is?’, it will be in Mr B’s interest to quote a value rather below
what he thinks to be the correct one, since in this way he can hope to pick up some
BP shares cheaply. Conversely, if I say to him:‘I want to buy 100 BP shares, what
do you think their value is?’, it will be in Mr B’s interest to quote a value rather
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above what he thinks to be the correct one, since in this way he can hope to sell
some BP shares at a good profit. If, however, I ask Mr B’s opinion as to the value
of a BP share without saying whether I want to buy or sell, he will be forced to
state his true opinion as to the value. Of course, this is only a hypothetical example
to illustrate the point. In actual stock market practice, jobbers quote one price for
buying and one for selling.

My next point concerns the way in which the magnitude of the stake S is
measured, for here there is a difference between De Finetti (at least in his early
papers) and Ramsey. De Finetti took the stakes to be in money, whereas Ramsey
developed a theory of utility and took the stakes to be in utility as he had defined it.
My own preference is for De Finetti’s early approach, i.e. stakes in money, and I
will now briefly discuss some of the issues involved.

If the bets are to be in money, then it is obvious that the sums used should not be
too large – at least in relation to Mr B’s fortune. Suppose Mr B’s entire savings
amount to £500. Then it would not be reasonable for Ms A to propose a bet with
him on whether it will rain tomorrow with a stake of £500. On the other hand, if
Mr B happens to be a billionaire, a stake of £500 might not be unreasonable,
provided Ms A’s research grant can cover bets of this magnitude.

Ramsey thinks that difficulties of this sort constitute a serious objection to
money bets, for he writes: ‘... if money bets are to be used, it is evident that they
should be for as small stakes as possible. But then again the measurement is
spoiled by introducing the new factor of reluctance to bother about trifles.’
(1926:176). It seems to me, however, that this difficulty can be overcome. Ms A
has to choose a size of stake which is small enough in relation to Mr B’s fortune
so that the bet will not damage him financially but which is large enough to
make him think seriously about the bet. I think that it would, in general, be
possible to find such a level for the stakes, especially as we have to imagine Mr
B as co-operating with the psychological experiment of trying to measure his
degree of belief. If Mr B were totally averse to such an experiment, it would
hardly be possible to carry it out.

Although there do not seem to me any major objections to money bets, I regard
the introduction of a satisfactory measure of utility as a virtually impossible task.
We can see some of the difficulties by giving a few quotations which illustrate
Ramsey’s own procedure. Ramsey writes:

Let us call the things a person ultimately desires ‘goods’, and let us at first
assume that they are numerically measurable and additive. That is to say that
if he prefers for its own sake an hour’s swimming to an hour’s reading, he
will prefer two hours’ swimming to one hour’s swimming and one hour’s
reading. This is of course absurd in the given case but this may only be
because swimming and reading are not ultimate goods, and because we cannot
imagine a second hour’s swimming precisely similar to the first, owing to
fatigue, etc.

(1926:173–4)
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I find it hard to believe that there is any satisfactory way of comparing the utility of
an hour’s swimming with that of an hour’s reading. Both can give considerable
pleasure, but the pleasures are of quite a different kind and so incomparable. Ramsey
thinks that this difficulty can be overcome by introducing ‘ultimate goods’. But
what are these ultimate goods? No ultimate good is ever specified, and such a
thing would appear to be a myth rather than a reality.

At another stage of his introduction of utility, Ramsey writes: ‘... we could, by
offering him options, discover how he placed in order of merit all possible courses
of the world. In this way all possible worlds would be put in an order of value’
(1926:176). Such a procedure seems to belong to the realm of pure fantasy. Compare
it with the realistic possibility of betting for a stake of £1 on whether it will rain
tomorrow.

It might be objected that these arguments are directed just against Ramsey’s
way of introducing measurable utility, and that other more satisfactory methods
might be available. Yet other methods involve similar difficulties and often lead to
curious paradoxes which are difficult to resolve. Surely it is better to avoid this
minefield and just consider money bets made with appropriate stakes. This latter
procedure, far from belonging to the realm of fantasy can easily be carried out in
practice. Indeed, De Finetti used to get his class of students to produce betting
quotients on the results of Italian football games. Being of a democratic turn of
mind, he invited the porter to participate as well, and the porter was nearly always
the most successful. He knew more than anyone else about football.

A further objection to the betting scheme might be that it produces only very
rough estimates and hardly exact numerical probabilities. De Finetti’s reply to this
point is that exact numerical degrees of belief are indeed something of a fiction or
idealisation, but that this idealisation is a useful one in that it simplifies the
mathematical calculations. Moreover, provided we do not forget that the
mathematics must be understood as holding approximately, this idealisation does
no harm. As De Finetti himself says:

... if you want to apply mathematics, you must act as though the measured
magnitudes have precise values. This fiction is very fruitful, as everybody
knows; the fact that it is only a fiction does not diminish its value as long as
we bear in mind that the precision of the result will be what it will be.... To
go, with the valid help of mathematics, from approximate premises to
approximate conclusions, I must go by way of an exact algorithm, even
though I consider it an artifice.

(1931a:204)

My own conclusion then is that we should use the betting scheme with money
bets and appropriately selected stakes, and that this does indeed give a reasonable
method for measuring belief in many situations. I therefore adhere to the approach
of the early De Finetti. Curiously, however, De Finetti in his later period moved
in the direction of using utility, and in his last papers even abandoned the
betting approach altogether. In 1957 De Finetti still hesitated to follow Savage
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in trying to unify probability and utility within decision theory (see quotation
in Galavotti 1989:240). However, in 1964 in a new footnote to his 1937 paper he
wrote: ‘Such a formulation could better, like Ramsey’s, deal with expected
utilities’ (p. 102). In his 1970 book he used mainly decision theory to introduce
subjective probabilities. He also develops a theory of utility, even though he
still seems to regard this with some degree of scepticism (see De Finetti 1970:76–
82). In one of his very last papers, he went as far as to repudiate the whole betting
approach as inadequate, writing: ‘... betting, strictly speaking, does not pertain
to probability but to the Theory of Games ... It is because of this that I invented
and applied in experiments (probabilistic forecasts) the “proper scoring rules”’
(De Finetti 1981b:55). Thus, De Finetti himself moved in the direction of decision
theory and utilities. However, for reasons already given, my own preference is
for De Finetti’s earlier approach, and this is what I will use as the basis of the
account which follows.3

The first problem in the subjective approach was how to measure degrees of
belief. We have seen how the betting scheme offers a reasonable solution to this
problem. Mr B’s degree of belief in E is measured by his betting quotient in E as
elicited in the situation described above. It is worth noting that this way of
introducing probabilities is in accordance with the philosophy of operationalism.
A recent important contribution to subjective probability is Lad (1996). In this
book, Lad provides a foundation for subjective probability similar to De Finetti’s
but goes beyond De Finetti by showing in detail how statistics can be developed
from this point of view. In the title of his book and throughout the book itself,
Lad speaks of ‘operational subjective statistical methods’, which emphasises
the point that subjective probability is based on operationalism. Lad writes: ‘An
operationally defined measurement is a specified procedure of action which,
when followed, yields a number.’ (1996:39). It is clear that the measurement of
degrees of belief by betting quotients as just described is an operationally defined
measurement in this sense. We shall return to this connection between subjective
probability and operationalism from time to time in what follows.

Let us now examine a second problem which arises in the subjective approach.
If the subjective theory is to provide an interpretation of the standard mathematical
theory of probability, then these degrees of belief (or betting quotients) ought to
satisfy the standard axioms of probability. But why should they do so? It seems
easy to imagine an individual whose degrees of belief are quite arbitrary and do
not satisfy any of the axioms of probability. The subjectivists solve this problem
and derive the axioms of probability by using the concept of coherence. I will
next define this concept and then comment on its significance.

Coherence

If Mr B has to bet on a number of events E1, ..., En, his betting quotients are said to
be coherent if and only if Ms A cannot choose stakes S1, ..., Sn such that she wins
whatever happens. If Ms A can choose stakes so that she wins whatever happens,
she is said to have made a Dutch book against Mr B.
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It is taken as obvious that Mr B will want his bets to be coherent, that is to say
he will want to avoid the possibility of his losing whatever happens. Surprisingly,
this condition is both necessary and sufficient for betting quotients to satisfy the
axioms of probability. This is the content of the following theorem.

The Ramsey–De Finetti theorem

A set of betting quotients is coherent if and only if they satisfy the axioms of
probability.

So far we have made a contrast between the logical theory, in which probability
is degree of rational belief, and the subjective theory, in which probability is degree
of belief. The concept of coherence shows that this needs a little qualification,
since coherence is after all a rationality constraint, and degrees of belief in the
subjective approach must be rational, at least to the extent of satisfying this
constraint. De Finetti expresses this very well in the title of his 1937 paper
‘Foresight: Its Logical Laws, Its Subjective Sources’. The logical laws here come
from the condition of coherence. Naturally, coherence does not determine a single
degree of rational belief but leaves open a wide range of choices. Thus some
subjective sources for probability are also needed.

Ramsey uses the term ‘consistency’ for coherence, and writes that: ‘... the laws
of probability are laws of consistency’ (1926:182). The idea here is that we have to
make sure that our various degrees of belief fit together and so avoid the
‘contradiction’ of having a Dutch book made against us. The term ‘coherence’ is
now generally preferred, because consistency has a well-defined but different
meaning in deductive logic. Even though there is an analogy, it seems better to use
different terms. I will now give a detailed proof of the Ramsey–De Finetti theorem.
First I will state the axioms of probability and then prove the theorem for each of
them in turn.

The axioms of probability

Let E, F, ..., E1, ... stand for events, concerning which we can have some degree of
belief whether they will occur, or have occurred. Let Ω denote the certain event,
which must occur. There are then three axioms of probability.

1 0 ≤ P(E) ≤ 1 for any E, and P(Ω) = 1.
2 (Addition Law) If E1, ..., En are events which are exclusive (i.e. no two can

both occur) and exhaustive (i.e. at least one must occur), then

P(E1) + ... + P(En) = 1

3 (Multiplication Law) For any two events E, F

P(E & F) = P(E | F) P(F)



60 The subjective theory

The Addition Law can be stated in a different but equivalent form. For any event
E, F, let E v F be the event that either E occurs or F occurs or both occur. Then we
have

2' (Alternative form of the Addition Law) If E, F are any two exclusive events,
then

P(E) + P(F) = P(E v F)

We can prove the equivalence of 2 and 2' as follows:

(a) (2 → 2') Let E, F be exclusive events, and let Ω \ (E v F) be the event that
something other than E or F occurs. E, F, Ω \ (E v F) are exclusive and
exhaustive events. So by Axiom 2

P(E) + P(F) + P(Ω \ (E v F)) = 1

But E v F, Ω\ (E v F) are also exclusive and exhaustive events. So by Axiom 2

P(E v F) + P(Ω \ (E v F)) = 1

Thus subtracting, we get

P(E) + P(F) = P(E v F) i.e. Axiom 2'

(b) (2' → 2) We first prove by induction that Axiom 2' holds for any n exclusive
events. The case n = 2 is just Axiom 2' itself. Suppose the result holds for n -
1, i.e. if E1, ..., E n - 1 are any exclusive events, then

P(E1) + ... + P(En - 1) = P(E1 v ... v En - 1)

Now consider n exclusive events E1, ..., En. The events (E1 v ... v En - 1), En are
also exclusive. So by Axiom 2'

P(E1 v ... v En - 1) + P(En) = P(E1 v ... v En)

But since E1, ..., En - 1 are exclusive events, it follows that

P(E1) + ... + P(En) = P(E1 v ... v En)

But if E1, ..., En are exhaustive as well as exclusive, E1 v ... v En is the certain
event with probability 1, and so Axiom 2 follows.

Proof of the Ramsey–De Finetti theorem 4

Proof for Axiom 1

(a) Coherence → Axiom 1: Let us first consider the case of the certain event O. If
Mr B chooses q(Ω) > 1, Ms A can win by choosing S > 0. If Mr B chooses
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q(Ω) < 1, Ms A can win by choosing S < 0. Hence to be coherent, Mr B must
choose q(Ω) = 1. Now take any arbitrary event E. If Mr B chooses q(E) > 1,
Ms A can win by choosing S > 0. If Mr B chooses q(E) < 0, Ms A can win by
choosing S < 0. Hence to be coherent, Mr B must choose 0 = q(E) = 1.

(b) Axiom 1 → coherence: If Mr B chooses q(Ω) = 1, there is no way that Ms A
can win, since the stake, whatever its sign, is simply passed from one to the
other and then back again. For an arbitrary event E, Ms A cannot choose the
sign or size of S so that she always wins if Mr B chooses 0 = q(E) = 1.

Proof for Axiom 2

(a) Coherence → Axiom 2: Suppose Mr B chooses betting quotients q1, ..., qn,
and Ms A chooses stakes S1, ..., Sn. Then, if event Ei occurs, Ms A’s gain Gi is
given by

Gi = q1S1 + ... + qnSn - Si (4.1)

So if Ms A sets S1 = S2 = ... = Sn = S, then

Gi = S(q1 + ... + qn - 1)

Thus, if Mr B chooses q1 + ... + qn > 1, then Ms A can always win by setting
S > 0. If Mr B chooses q1 + ... + qn < 1, then Ms A can always win by setting
S < 0. Hence, to be coherent, Mr B must choose q1 + ... + qn = 1.

(b) Axiom 2 → coherence: Since Axiom 2 holds, we have q1 + ... + qn = 1. Now
by Equation 4.1 above, we have

qiGi = qi(q1S1 + ... + qnSn) - qiSi

So summing over i, we get

q1G1 + q2G2 + ... + qnGn = 0 (4.2)

Equation 4.2 shows that the Gi cannot all be positive for the following reason.
The qi = 0, and, since they sum to 1, at least one of them must be > 0. Hence
if all the Gi were > 0, q1G1 + ... + qnGn > 0, which contradicts Equation 4.2.
Hence, not all the Gi can be positive, which is equivalent to saying that the
betting quotients are coherent. The consideration of q1G1 + q2G2 + ... + qnGn

may look like a mathematical trick, but in fact it has a simple intuitive meaning.5

It is just Ms A’s expected gain relative to the probabilities chosen by Mr B. If
this expected gain is zero, Ms A cannot make a Dutch book against Mr B.

To prove the Ramsey–De Finetti theorem for Axiom 3, we need the
following definition.
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Definition of conditional betting quotient

q(E | F), the conditional betting quotient for E given F, is the betting quotient
which Mr B would give for E on the understanding that the bet is called off and all
stakes returned if F does not occur.

Ramsey remarks that ‘Such conditional bets were often made in the eighteenth
century.’ (1926:180).

Proof for Axiom 3

In all parts of the proof, we shall use the following notation

q = q(E & F)
q′ = q(E | F)
q″ = q(F)

(a) Coherence → Axiom 3, using determinants: Suppose Mr B chooses betting
quotients q, q′, q″ as above, and Ms A chooses corresponding stakes S, S′, S″.
Three possible cases can occur, and we shall calculate Ms A’s gain in each
case.

1 E and F both occur

G1 = (q - 1) S + (q′ - 1)S′ + (q″ - 1) S″

2 E does not occur, but F occurs

G2 = qS + q′S′ + (q″ - 1) S″

3 F does not occur

G3 = qS +    + q″S″

For fixed G1, G2, G3 > 0, these are three linear equations in three unknowns,
S, S′, S″. Thus, they always have a solution, unless the determinant vanishes. So,
for coherence, we must have

Subtracting the bottom row from the top two rows, and then the middle row from
the top row gives
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Then expanding by the first row, we get

- q′q″ + q = 0
So q = q′q″     as required.

For those unfamiliar with the theory of determinants, the following gives a
proof of the same result without using determinants.

(b) Coherence → Axiom 3, without using determinants: Suppose Ms A chooses
S = +1, S′ = -1, S″ = -q′, we then have

G1 = (q - 1) + (1 - q′) + q′ - q′q″ = q - q′q″
G2 = q - q′ - q′q″ + q′ = q - q′q″
G3 = q - q′q″

So all Ms A’s gains are positive, unless q ≤ q′q″.
Similarly, if Ms A chooses S = -1, S′ = +1, S″ = q′, all her gains are

positive unless q ≥  q′q″. So, to be coherent, Mr B must choose q = q′q″, as
required.

(c) Axiom 3 → coherence: We have to show that if q = q′q″, the betting quotients
are coherent, i.e. Ms A’s gains G1, G2, G3 cannot all be positive. Using the
method employed for Axiom 2, we need to consider Ms A’s expected gain
given the probabilities chosen by Mr B, and then show that it is zero. Ms A’s
expected gain is in fact λ 1G1 + λ 2G2 + λ 3G3 where

λ 1 = q′q″, λ 2 = (1 - q′)q″, λ 3 = 1 - q″. Since 0 ≤ q′, q″ ≤ 1, each λ i ≥  0.

Now

λ 1G1 + λ 2G2 + λ 3G3 = αS + βS′ + γS″,

where

α = q′q″(q - 1) + (1 - q′)q″q + (1 - q″) q

= q″(q′q - q′ + q - qq′ + (1 - q″)q′), since q = q′q″
= q″(q′q - q′ + q′q″ - qq′ + q′ - q′q″)

= 0
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β = q′q″(q’ - 1) + (1 - q′)q″q′ = 0

γ = q′q″(q″ - 1) + (1 - q′)q″(q″ - 1) + (1 - q″)q″ = 0

Hence λ 1G1 + λ 2G2 + λ 3G3 = 0.

But now at least one of the λ i > 0, for either q″ ≠  1, when λ 3 > 0, or q″ = 1, when
λ 1 = q′, λ 2 = 1 - q′. In this case, either q′ ≠  1, when λ 2 > 0, or q′ = 1,
when λ 1 > 0. It follows that not all the Gi can be positive, and so Mr B’s betting
quotients are coherent, as required.

The Ramsey–De Finetti theorem is a remarkable achievement, and clearly
demonstrates the superiority of the subjective to the logical theory. Whereas in
the logical theory the axioms of probability could only be justified by a vague
and unsatisfactory appeal to intuition, in the subjective theory they can be proved
rigorously from the eminently plausible condition of coherence. Indeed, given
the Ramsey–De Finetti theorem, it is difficult to deny that the subjective theory
provides a valid interpretation of the mathematical calculus of probability – though
it is of course possible to hold that there are other valid interpretations of this
calculus. In addition, the subjective theory solves the paradoxes of the Principle
of Indifference by, in effect, making this principle unnecessary, or at most a
heuristic device. In the logical theory, the principle was necessary to obtain the
supposedly unique a priori degrees of rational belief, but, according to the
subjective theory, there are no unique a priori probabilities. Different individuals
can choose their a priori probabilities in different ways, and, provided they are
coherent, there need be nothing wrong with these different choices. Thus, if the
Principle of Indifference is used as a heuristic device, and suggests two different
possibilities for the a priori probabilities, there is no contradiction. Mr B might
choose one of these possibilities as his subjective valuation, and Ms D might
choose the other. Ramsey is well aware of the superiority of the subjective to the
logical theory in these respects and states them as follows:

In the first place it gives us a clear justification for the axioms of the calculus,
which on such a system as Mr Keynes’ is entirely wanting. For now it is
easily seen that if partial beliefs are consistent they will obey these axioms,
but it is utterly obscure why Mr Keynes’ mysterious logical relations should
obey them. We should be so curiously ignorant of the instances of these
relations, and so curiously knowledgeable about their general laws.

Secondly, the Principle of Indifference can now be altogether dispensed
with; ... To be able to turn the Principle of Indifference out of formal logic
is a great advantage; for it is fairly clearly impossible to lay down purely
logical conditions for its validity, as is attempted by Mr Keynes.

(Ramsey 1926:188–9)

There remain, however, some problems connected with the subjective theory, and
in particular the question of how probabilities which appear to be objective, such
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as the probability of a particular isotope of uranium disintegrating in a year, can be
explained on this approach. De Finetti tackles this problem by introducing the
concept of exchangeability, and I will give an account of this below (pp. 69– 83).
Before going on to this, however, there is a matter which may well be of interest to
mathematicians. Nearly all advanced treatments of mathematical theory of
probability are today based on the Kolmogorov axioms (see Kolmogorov 1933).
Now the axioms given above are of course similar to the Kolmogorov axioms, but
do nonetheless differ on one or two points. It certainly seems worth examining
these divergences from standard mathematical practice to see what significance
they have. In general, in this book my aim is to discuss the philosophical side of
probability using as little mathematics as possible, indeed no more than quite
elementary algebra. Sometimes, as here, however, it will be useful to discuss issues
which require a knowledge of more advanced mathematical approaches to
probability (random variables, measure theory, analysis, etc.). My plan is to place
such discussions in sections marked with an asterisk and to arrange them so that
they can be read by mathematicians but omitted by non-mathematicians without
losing the general thread of the argument.

A comparison of the axiom system given here with the
Kolmogorov axioms*

De Finetti assigns probabilities to events E, F, ..., including the certain event which
we have denoted by Ω. In Kolmogorov’s mathematical approach, probabilities are
assigned to the subsets of a set Ω. This difference does not seem to me an important
one, since it would be fairly easy to map De Finetti’s treatment into set-theoretic
language. A more significant divergence comes with the treatment of conditional
probabilities. Kolmogorov introduces these by definition (see Kolmogorov 1933:6),
so that

The case P(F) = 0 is dealt with by Kolmogorov later in his monograph (1933:Chapter
V). Thus, in Kolmogorov’s treatment an equality is established by definition which
in the treatment we have just given is a substantial axiom (Axiom 3) requiring an
elaborate proof, and is indeed the multiplication law of probability.

In fact, this is not the only instance in mathematics where a substantial
assumption appears in the form of a definition, but the practice does not seem to
me a good one. I would argue that it is better to state important assumptions as
axioms (or derive them as theorems) and try to keep definitions as far as possible
as mere abbreviations. This inclines me to prefer De Finetti’s treatment to
Kolmogorov’s on this point. This would amount to taking P(E | F) as a primitive
(undefined) term in the axiom system and characterising it by an axiom, rather
than introducing it by an explicit definition.
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It is clear that De Finetti’s approach is more natural for the subjective theory,
since conditional probabilities can be introduced as conditional betting quotients
defined within a particular betting scheme. It is then by no means obvious that
these conditional betting quotients obey our Axiom 3; indeed the proof is quite
long. Moreover, similar considerations apply in the other interpretations of
probability. We have seen in Chapter 3 that the notion of the conditional probability
of h given e is a primitive and fundamental notion within the logical theory. It thus
seems natural to take it as a primitive notion in an axiom system, as Keynes does.
As we shall see in Chapters 5 and 6, the notion of conditional probability is also
primitive in the frequency and propensity interpretations. On this point I side with
De Finetti rather than Kolmogorov, and I favour the introduction of conditional
probabilities by an axiom rather than a definition. This, moreover, leads to a rather
elegant symmetry in the axiomatic treatment between the addition and multiplication
laws of probability.

The next important difference between De Finetti and Kolmogorov concerns
the issue of finite versus countable additivity. De Finetti’s Axiom 2 (the Addition
Law) can, as we have seen, be stated in the equivalent form: if E1, ..., En are events
which are exclusive,

P(E1 v ... v En) = P(E1) + ... + P(En).

The question now arises whether we can extend the Addition Law from the finite
case to the countably infinite case, that is to say whether we can legitimately go
from finite additivity to countable additivity. This would involve adopting as an
axiom the following stronger form of the Addition Law.

Addition law for countable additivity: If E1, ..., En, ... is a countably infinite
sequence of exclusive events, then

P(E1 v ... v En v ...) = P(E1) + ... + P(En) + ...

Kolmogorov’s treatment of this question is interesting. In the first chapter of his
monograph he allows only finite additivity. Then in the second chapter he adds to
his five previous axioms a sixth axiom (the axiom of continuity) which is equivalent
to the Addition Law for countable additivity as just stated. Kolmogorov does,
however, appear to have some reservations about his axiom, for he says:

Since the new axiom is essential for infinite fields of probability only, it is
almost impossible to elucidate its empirical meaning, as has been done, for
example, in the case of Axioms I – V in §2 of the first chapter. For, in
describing any observable random process we can obtain only finite fields
of probability. Infinite fields of probability occur only as idealised models
of real random processes. We limit ourselves, arbitrarily, to only those models
which satisfy Axiom VI. This limitation has been found expedient in researches
of the most diverse sort.
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Kolmogorov here argues that countable additivity goes beyond what can be
checked empirically, but that its adoption is nonetheless justified because of its
usefulness in a whole range of research.

De Finetti shares Kolmogorov’s doubts about countable additivity, but he regards
them as a reason for limiting oneself to finite additivity.6 Thus he says that:

[The assumption of countable additivity] is the one most commonly accepted
at present; it had, if not its origin, its systematization in Kolmogorov’s axioms
(1933). Its success owes much to the mathematical convenience of making
the calculus of probability merely a translation of modern measure theory....
No-one has given a real justification of countable additivity (other than just
taking it as a ‘natural extension’ of finite additivity).

(1970:vol. 1, 119)

De Finetti, however, thinks that one should not introduce new axioms simply on
the grounds of mathematical convenience, unless these axioms can be justified in
terms of the meaning of probability. Now in the subjective theory, probabilities are
given by an individual’s betting quotients. A given individual will always bet on a
finite number of events, and it is difficult to imagine bets on an infinite number of
events. Thus the subjective theory would seem to justify finite, but not countable,
additivity. De Finetti gives a number of other arguments in favour of finite additivity
and against countable additivity. We shall here consider one more of these.

If we adopt countable additivity, then it becomes impossible to have a uniform
distribution over a countable set, such as the positive integers {1, 2, ..., n, ...}.
For suppose we put P(i) = p for all i. If p > 0, then P(1) + P(2) + ... + P(n) + ...
becomes infinite, whereas by the axioms of probability it should be = 1. If we
put P(i) = 0 for all i, then by countable additivity P({1, 2, ... , n, ...}) = P(1) +
P(2) + ... + P(n) + ... = 0, whereas, by Axiom 1, P({1, 2, ..., n, ...}) = P(O) = 1.
However, if we adopt only finite additivity, then the second half of the argument
is blocked, so that it becomes possible to have a uniform distribution over the
positive integers. De Finetti regards it as a counterintuitive feature of the axiom
of countable additivity that it prevents us from having such uniform distributions.
After all, for any finite n, however large, we can introduce a uniform distribution
over the positive integers 1, 2, ..., n by setting P(i) = 1/n, i = 1, ..., n. However, if
we postulate countable additivity over the infinite collection of positive integers
1, 2, ..., n, ..., we can only have what he terms ‘extremely unbalanced partitions’
(1970:Vol. 1, 122). He explains his meaning here more fully later on when he
says that countable additivity: ‘forces me to choose some finite subset of them
[i.e. the countable class in question, e.g. the positive integers] to which I attribute
a total probability of at least 99% (leaving 1% for the remainder; and I could
have said 99.999% with 0.001% remaining, or something even more extreme).’
(1970:Vol. 2, 351) This argument does not perhaps go very well with the previous
argument which suggests that on the subjective approach one should always
limit oneself to finite collections of events and not consider probability
distributions over countable sets at all.
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Not all probabilists agree with De Finetti’s attitude to countable additivity
within the subjective theory. Adams (1964) presented a proof that countable
additivity does follow from the assumptions of the subjective approach. This
proof has been considerably simplified by Williamson (1999), which also
discusses the philosophical problems involved. Williamson devises a betting
situation in which it would seem quite reasonable to bet on a countable number
of events. Suppose Ms A tells Mr B that in a sealed parcel in the next room there
is the computer print-out of a positive integer, and asks him to give a betting
quotient on this number being n for all n. Now of course Mr B would realise that
the practicalities of technology must impose some upper bound on the value
which the hidden number could take. However, this upper bound is hard to
determine, and the problem is a very open-ended one. Rather than fix on a
particular upper bound, it would be easier for Mr B to produce an infinite sequence
of betting quotients. Actually, the infinite is often brought into applied
mathematics for exactly this kind of reason.

A noteworthy feature of this example is that a uniform distribution is highly
implausible. On the contrary, we would expect small numbers to be more probable
than very large ones. In general, in any betting situation in which we approximate
the large open-ended finite by the infinite, the unbalanced distributions described
by De Finetti, far from being counterintuitive, are just what we would expect.

Williamson’s other point is that, once we have introduced a betting scheme
for a countably infinite number of events, it only requires one extra condition to
derive the axiom of countable additivity by exactly the same Dutch book argument
which De Finetti uses for finite additivity. This extra condition is that only a
finite amount of money should change hands. Assuming this, let us see how the
proof of Axiom 2 must be modified if we have, instead of a finite number of
events E1, ..., En, a countably infinite number E1, ..., En, .... Because only a finite
amount of money should change hands, Ms A’s gains Gi must all be finite, which
means in turn that the series q1S1 + ... + qnSn + ... must converge. Moreover, from
Axiom 1, it follows that q1 + ... + qn + ... ≤ 1. If in the proof of Axiom 2 given
above, we replace the finite sums by infinite series, then, using the above results,
all the series converge, and the proof goes through just as before. So, if we allow
bets over a countable infinity of events (as seems eminently reasonable in the
kind of situation described above), and if we specify that only a finite amount of
money should change hands (which can hardly be avoided), then the axiom of
countable additivity does follow rigorously from exactly the same Dutch book
argument which De Finetti uses to establish finite additivity. This argument of
Williamson’s seems to me to show that countable additivity is completely justified
within the subjective theory, and that De Finetti was wrong to deny it.

This result seems to me to strengthen rather than weaken the subjective theory.
On De Finetti’s approach, mathematicians who adopted the subjective theory of
probability would have to use a mathematical theory somewhat different from the
standard one. Many would surely regard this as an argument against becoming a
subjectivist. Williamson’s argument shows that such doubts are quite unnecessary,
and that it is perfectly possible both to be a subjectivist and to use the standard
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mathematical theory. Moreover, as Williamson points out, countable additivity
strengthens the subjective theory as against the logical theory. Suppose we were
betting on a countably infinite sequence of events E1, E2,..., En, ..., and suppose we
had no reason to prefer Ei to Ej for all i, j, then the logical theory with its Principle
of Indifference would seem to require a uniform distribution. Countable additivity
forces a skew distribution on us, thus preventing a logical interpretation and
introducing a subjective element. So, ironically, De Finetti’s defence of a uniform
distribution in this context is more of a defence of the logical view than of his own
subjective approach.

Apparently objective probabilities in the subjective theory:
exchangeability

So far the subjective theory has had considerable success. Starting from the
analysis of probability as the degree of belief of an individual, it has shown how
such degrees of belief can be measured, and how from the simple and plausible
condition of coherence the standard mathematical axioms of probability can be
derived. All this establishes beyond doubt that subjective probabilities are at
least one of the valid interpretations of the mathematical calculus. Moreover,
there are a number of situations where the subjective analysis of probability
looks highly plausible. Examples would be the probability of it raining tomorrow,
the probability that a particular party will win the next election or the probability
of a particular horse winning a race. Such probabilities can plausibly be said to
be subjective, or at least to involve a considerable subjective component. Yet
there are other probabilities which do seem, at first sight at least, to be completely
objective. Suppose we have a die which is shown by careful tests to be perfectly
balanced mechanically, and which in a series of trials has given approximately
the same frequency for each of its faces. Surely for such a die P(5) = 1/6, and this
is an objective fact, not a matter of subjective opinion. Then again consider the
probability of a particular isotope of uranium disintegrating in a year. This is
surely not a matter of opinion, but something which can be calculated from
quantities specified in textbooks of physics. Such a probability looks every bit
as objective as, for example, the mass of the isotope. How is a supporter of the
subjective theory of probability to deal with cases of this sort?

Actually there are two possible approaches. First of all, it could be admitted
that the examples we have cited, and others like them, are indeed objective, and
consequently that there are at least two different concepts of probability which
apply in different circumstances. This was the position which Ramsey (1926)
adopted, and I will discuss it in Chapter 8. Second, however, it could be claimed
that all probabilities are subjective, and that even apparently objective
probabilities, such as the ones just described, can be explicated in terms of degree
of subjective belief. This was the line adopted by De Finetti, and I will next
consider his argument in detail.

De Finetti states the problem as follows:


