
TABLE 2.3 

State Description Weight Structure Description Weight 

1. Fa.Fb.Fc 1/20 A11F 1/20 

2. Fa.Fb-Fc 
3. Fa.-Fb.Fc 
4. -Fa.Fb.Fc 

3/20 
3/20 
3/20 

2 F, 1 -F 9/20 

5. Fa.-Fb.-Fc 
6. —Fa.Fb.~Fc 
1. -Fa-Fb.Fc 

3/20 
3/20 
3/20 

\F,2~F 9/20 

8. ~Fa.-Fb.-Fc 1/20 NoF 1/20 

(The idea of a confirmation function of this type was given in Burks 1953; the 
philosophical issues are further discussed in Burks 1977, Chapter 3.) This method of 
weighting, which may be designated m ° , yields a confirmation function C°, which 
is a sort of counterinductive method. Whereas m* places higher weights on the first 
and last state descriptions, which are state descriptions for universes with a great deal 
of uniformity (either every object has the property, or none has it), m° places lower 
weights on descriptions of uniform universes. Like c*, c° allows for ''learning from 
experience,'' but it is a funny kind of anti-inductive ' 'learning.'' Before we reject m ° 
out of hand, however, we should ask ourselves if we have any a priori guarantee that 
our universe is uniform. Can we select a suitable confirmation function without being 
totally arbitrary about it? This is the basic problem with the logical interpretation of 
probability. 

Part IV: Confirmation and Probability 

2.9 THE BAYESIAN ANALYSIS OF CONFIRMATION 

We now turn to the task of illustrating how the probabilistic apparatus developed 
above can be used to illuminate various issues concerning the confirmation of scien-
tific statements. Bayes's theorem (Rule 9) will appear again and again in these 
illustrations, justifying the appellation of Bayesian confirmation theory. 

Various ways are available to connect the probabilistic concept of confirmation 
back to the qualitative concept, but perhaps the most widely followed route utilizes 
an incremental notion of confirmation: E confirms H relative to the background 
knowledge K just in case the addition of £ to A' raises the probability of//, that is, 
Pr(H\E.K) >) Pr(H\K).13 Hempel's study of instance confirmation in terms of a 

13 Sometimes, when we say that a hypothesis has been confirmed, we mean that it has been rendered 
highly probable by the evidence. This is a high probability or absolute concept of confirmation, and it should 
be carefully distinguished from the incremental concept now under discussion (see Carnap 1962, Salmon 1973, 
and Salmon 1975). Salmon (1973) is the most elementary discussion. 
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two-place relation can be taken to be directed at the special case where K contains no 
information. Alternatively, we can suppose that K has been absorbed into the prob-
ability function in the sense that Pr(K) = l,14 in which case the condition for 
incremental confirmation reduces to Pr(H\E) > Pr{H). (The unconditional proba-
bility Pr(H) can be understood as the conditional probability Pr(H\T), where T is a 
vacuous statement, for example, a tautology. The axioms of Section 2.7 apply only 
to conditional probabilities.) 

It is easy to see that on the incremental version of confirmation, Hempel's 
consistency condition is violated as is 

Conjunction condition: If E confirms H and also H' then E confirms H.H'. 

It takes a bit more work to construct a counterexample to the special consequence 
condition. (This example is taken from Carnap 1950 and Salmon 1975, the latter of 
which contains a detailed discussion of Hempel's adequacy conditions in the light of 
the incremental notion of confirmation.) Towards this end take the background knowl-
edge to contain the following information. Ten players participate in a chess tourna-
ment in Pittsburgh; some are locals, some are from out of town; some are juniors, 
some are seniors; and some are men (Af), some are women (W). Their distribution is 
given by 

TABLE 2.4 

Locals Out-of-towners 

Juniors M, W, W M,M 

Seniors M, M W, W, W 

And finally, each player initially has an equal chance of winning. Now consider the 
hypotheses H: an out-of-towner wins, and H'\ a senior wins, and the evidence E: a 
woman wins. We find that 

Pr(H\E) = 3/5 > Pr(H) = 1/2 

so E confirms H. But 
Pr{HvH'\E) = 3/5 <( Pr(H v H') = 7/10. 

So E does not confirm H V H'; in fact E confirms ~(H v H') and so disconfirms 
HvH' even though H V H' is a consequence of H. 

The upshot is that on the incremental conception of confirmation, Hempel's 
adequacy conditions and, hence, his definition of qualitative confirmation, are inad-
equate. However, his adequacy conditions fare better on the high probability con-
ception of confirmation according to which E confirms H relative to K just in case 
Pr{H\E.K) > r, where r is some number greater than 0.5. But this notion of 

14 As would be the case if learning from experience is modeled as change of probability function through 
conditionalization; that is, when K is learned, Prold is placed by Prnew ( ) = Prold ( | K). From this point of 
view, Bayes's theorem (Rule 9) describes how probability changes when a new fact is learned. 
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confirmation cannot be what Hempel has in mind; for he wants to say that the 
observation of a single black raven (E) confirms the hypothesis that all ravens are 
black (//), although for typical K, Pr{H\E.K) will surely not be as great as 0.5. Thus, 
in what follows we continue to work with the incremental concept. 

The probabilistic approach to confirmation coupled with a simple application of 
Bayes's theorem also serves to reveal a kernel of truth in the H-D method. Suppose 
that the following conditions hold: 

(i) H, K^E; (ii) 1 > Pr(H\K) > 0; and (iii) 1 > Pr(E\K) > 0. 

Condition (i) is the basic H-D condition. Conditions (ii) and (iii) say that neither// 
nor E is known on the basis of the background information K to be almost surely false 
or almost surely true. Then on the incremental conception it follows, as the H-D 
methodology would have it, that E confirms H on the basis of K. By Bayes's theorem 

Pr{H\K) 

since by (i), 

Pr(E\H.K) = 1. 

It then follows from (ii) and (iii) that 

Pr(H\E.K) > Pr{H\K). 

Notice also that the smaller Pr{E\K) is, the greater the incremental confirmation 
afforded by E. This helps to ground the intuition that "surprising" evidence gives 
better confirmational value. However, this observation is really double-edged as will 
be seen in Section 2.10. 

The Bayesian analysis also affords a means of handling a disquieting feature of 
the H-D method, sometimes called the problem of irrelevant conjunction. If the H-D 
condition (i) holds for //, then it also holds for H.X where X is anything you like, 
including conjuncts to which E is intuitively irrelevant. In one sense the problem is 
mirrored in the Bayesian approach, for assuming that 1 > Pr(H.X\K) > 0, it follows 
that E incrementally confirms H.X. But since the special consequence condition does 
not hold in the Bayesian approach, we cannot infer that E confirms the consequence 
X of H.X. Moreover, under the H-D condition (i), the incremental confirmation of a 
hypothesis is directly proportional to its prior probability. Since 
Pr{H\K) > Pr(H.X\K), with strict inequality holding in typical cases, the incremen-
tal confirmation for H will be greater than for H.X. 

Bayesian methods are flexible enough to overcome various of the shortcomings 
of Hempel's account. Nothing, for example, prevents the explication of confirmation 
in terms of a ZV-function which allows observational evidence to boost the probability 
of theoretical hypotheses. In addition the Bayesian approach illuminates the para-
doxes of the ravens and Goodman's paradox. 

In the case of the ravens paradox we may grant that the evidence that the 
individual a is a piece of white chalk can confirm the hypothesis that "All ravens are 
black" since, to put it crudely, this evidence exhausts part of the content of the 
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hypothesis. Nevertheless, as Suppes (1966) has noted, if we are interested in sub-
jecting the hypothesis to a sharp test, it may be preferable to do outdoor ornithology 
and sample from the class of ravens rather than sampling from the class of nonblack 
things. Let a denote a randomly chosen object and let 

Pr(Ra.Ba) = pu Pr(Ra.-Ba) = p2 
Pr(-Ra.Ba) = p39 Pr(~Ra.~Ba) = p4. 

Then 

Pr{~Ba\Ra) = p2 + (px + p2) 
Pr(Ral-Ba) = p2±(p2 + p4) 

Thus, Pr(~Ba\Ra) > Pr{Ra\~Bd) just in case p4 > px. In our world it certainly 
seems true that/?4 > px. Thus, Suppes concludes that sampling ravens is more likely 
to produce a counterinstance to the ravens hypothesis than is sampling the class of 
nonblack things. 

There are two problems here. The first is that it is not clear how the last 
statement follows since a was supposed to be an object drawn at random from the 
universe at large. With that understanding, how does it follow that Pr{~Ba \Ra) is the 
probability that an object drawn at random from the class of ravens is nonblack? 
Second, it is the anti-inductivists such as Popper (see item 4 in Section 2.8 above and 
2.10 below) who are concerned with attempts to falsify hypotheses. It would seem 
that the Bayesian should concentrate on strategies that enhance absolute and incre-
mental probabilities. An approach due to Gaifman (1979) and Horwich (1982) com-
bines both of these points. 

Let us make it part of the background information K that a is an object drawn 
at random from the class of ravens while b is an object drawn at random from the class 
of nonblack things. Then an application of Bayes's theorem shows that 

Pr(HlRa.Ba.K) > Pr(H\~Rb.~Bb.K) 

just in case 

1 > Pr(~Rb\K) > Pr(Ba\K). 

To explore the meaning of the latter inequality, use the principle of total probability 
to find that 

Pr(Ba\K) = Pr(Ba\H.K) ■ Pr(H\K) + Pr(Ba\~H.K) ■ Pr(~H\K) 
= Pr(H\K) + Pr(Ba\~H.K) ■ Pr(~H\K) 

and that 

Pr(~Rb\K) - Pr(H\K) + Pr(~Rb\~H.K) • Pr(~H\K). 

So the inequality in question holds just in case 

1 > Pr(~Rb\~H.K) > Pr(Ba\~H.K), 

or 

Pr(~Ba\~H.K) > Pr(Rb\~H.K) > 0, 
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which is presumably true in our universe. For supposing that some ravens are non-
black, a random sample from the class of ravens is more apt to produce such a bird 
than is a random sample from the class of nonblack things since the class of nonblack 
things is much larger than the class of ravens. Thus, under the assumption of the 
stated sampling procedures, the evidence Ra.Ba does raise the probability of the 
ravens hypothesis more than the evidence ~Rb.~Bb does. The reason for this is 
precisely the differential propensities of the two sampling procedures to produce 
counterexamples, as Suppes originally suggested. 

The Bayesian analysis also casts light on the problems of induction, old and 
new, Humean and Goodmanian. Russell (1948) formulated two categories of induc-
tion by enumeration: 

Induction by simple enumeration is the following principle: "Given a number n of a's which 
have been found to be p's, and no a which has been found to be not a p, then the two 
statements: (a) 'the next a will be a p,' (b) 'all a's are p's,' both have a probability which 
increases as n increases, and approaches certainty as a limit as n approaches infinity." 

I shall call (a) "particular induction" and (b) "general induction." (1948, 401) 

Between Russell's "particular induction" and his "general induction" we can in-
terpolate another type, as the following definitions show (note that Russell's " a " and 
" P " refer to properties, not to individual things): 

Def. Relative to K, the predicate " P " is weakly projectible over the sequence of 
individuals al9 a2, ■ ■ ■ just in case15 

lim Pr(Pan+l\Pal Pan.K) = 1. 

Def Relative to K, "P" is strongly projectible over al9 a2, ... just in case 

lim Pr(Pan+l Pan+m\ Pa, Pan.K) = 1. 
n, m —> °° 

(The notation lim indicates the limit as m and n both tend to infinity in any manner 
m, n —» 0° 

you like.) A sufficient condition for both weak and strong probability is that the 
general hypothesis H: (i)Pat receives a nonzero prior probability. To see that it is 
sufficient for weak projectibility, we follow Jeffreys's (1957) proof. By Bayes's 
theorem 

Pr(H\Pa P. JH - Pr(Pai Pan+,\H.K) ■ Pr{H\K) 
Pr(HlPa> Pa» + 1 ■ K) ~ PriPa, Pan+1\K) 

_ Pr(H\K)  
~ Pr(Pai\K) ■ Pr(Pa2\Pai.K)- ... -PriPa^^Pa^ Pan-K) 

15 Equation lim xn = L means that, for any real number e > 0, there is an integer N > 0 
rt—»°o 

such that, for all n > N, I xn — L I < e. 
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Unless Pr(Pan+l\Pal Pan.K) goes to 1 as n —> °°, the denominator on the 
right-hand side of the second equality will eventually become less than Pr{H\K), 
contradicting the truth of probability that the left-hand side is no greater than 1. 

The posit that 
(?) Pr{[{i)Pat\K\ > 0 

is not necessary for weak projectibility. Carnap's systems of inductive logic (see item 
6 in Section 2.8 above) are relevant examples since in these systems (P) fails in a 
universe with an infinite number of individuals although weak projectibility can hold 
in these systems.16 But if we impose the requirement of countable additivity 

(CA) lim Pr(Pat Pan\K) = Pr[(i) Pat\K\ 

then (P) is necessary as well as sufficient for strong projectibility. 
Also assuming (CA), (P) is sufficient to generate a version of Russell's "gen-

eral induction," namely 

(G) YimPr^Pa^P^ Pan.K] = 1. 
n—> oo 

(Russell 1948 lays down a number of empirical postulates he thought were necessary 
for induction to work. From the present point of view these postulates can be inter-
preted as being directed to the question of which universal hypotheses should be given 
nonzero priors.) 

Humean skeptics who regiment their beliefs according to the axioms of prob-
ability cannot remain skeptical about the next instance or the universal generalization 
in the face of ever-increasing positive instances (and no negative instances) unless 
they assign a zero prior to the universal generalization. But 

Pr[(i)Pai\K] = 0 

implies that 

Pr[(3i) ~Pat\K\ = 1, 
which says that there is certainty that a counterinstance exists, which does not seem 
like a very skeptical attitude. 

16 A nonzero prior for the general hypothesis is a necessary condition for strong projectibility but not for 
weak projectibility. The point can be illustrated by using de Finetti's representation theorem, which says that if 
P is exchangeable over aXt a2, . . . (which means roughly that the probability does not depend on the order) 
then: 

Pr(Pai.Pa2 Pan I K) = J^O" d|x(6) 

where p,(6) is a uniquely determined measure on the unit interval 0 < 6 < 1. For the uniform measure d|x(6) 
= d(0) we have 

Pr(Pan+l\Pax Pan. K) = n + \in + 2 

and 

Pr (Pan + 1 Pan+m\Pax Pan.K) = m + \in + m + 1. 
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Note also that the above results on instance induction hold whether "P" is a 
normal or a Goodmanized predicate—for example, they hold just as well for P*at 
which is defined as 

[(i <= 2000).PaJ V Hi > 2000).-Pa,-)], 
where Pat means that at is purple. But this fact just goes to show how weak the results 
are; in particular, they hold only in the limit as n —» ™ and they give no information 
about how rapidly the limit is approached. 

Another way to bring out the weakness is to note that (P) does not guarantee 
even a weak form of Hume projectibility. 

Def Relative to K, "P" is weakly Hume projectible over the doubly infinite 
sequence . . . , a_2, a_x, a0, al7 a2, . . . just in case for any n, 
l\m Pr{Pan\Pan_x Pan_k . K) = 1. 
k—> °° 

(To illustrate the difference between the Humean and non-Humean versions of pro-
jectibility, let Pan mean that the sun rises on day n. The non-Humean form of 
projectibility requires that if you see the sun rise on day 1, on day 2, and so on, then 
for any e > 0 there will come a day N when your probability that the sun will rise on 
day N + I will be at least 1 — e. By contrast, Hume projectibility requires that if 
you saw the sun rise yesterday, the day before yesterday, and so on into the past, then 
eventually your confidence that the sun will rise tomorrow approaches certainty.) 

If (P) were sufficient for Hume projectibility we could assign nonzero priors to 
both {i)Pat and (i)P*ai9 with the result that as the past instances accumulate, the 
probabilities for Pa200i and for P*a200l both approach 1, which is a contradiction. 

A sufficient condition for Hume projectibility is exchangeability. 

Def Relative to K, "P" is exchangeable for Pr over the ats just in case for any n 
and m 

Pr(±Pan ±Pan + m\K) = Pr(±Pan. ±Pan. + m.\K) 
where ± indicates that either P or its negation may be chosen and [av] is any 
permutation of the ats in which all but a finite number are left fixed. Should we then 
use a /V-function for which the predicate "purple" is exchangeable rather than the 
Goodmanized version of "purple"? Bayesianism per se does not give the answer 
anymore than it gives the answer to who will win the presidential election in the year 
2000. But it does permit us to identify the assumptions needed to guarantee the 
validity of one form or another of induction. 

Having touted the virtues of the Bayesian approach to confirmation, it is now 
only fair to acknowledge that it is subject to some serious challenges. If it can rise to 
these challenges, it becomes all the more attractive. 

2.10 CHALLENGES TO BAYESIANISM 
1. Nonzero priors. Popper (1959) claims that "in an infinite universe . . . the 

probability of any (non-tautological) universal law will be zero.'' If Popper were right 
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and universal generalizations could not be probabilified, then Bayesianism would be 
worthless as applied to theories of the advanced sciences, and we would presumably 
have to resort to Popper's method of corroboration (see item 4 in Section 2.8 above). 

To establish Popper's main negative claim it would suffice to show that the prior 
probability of a universal generalization must be zero. Consider again H: (ijPa^ 
Since for any n 

HY-Pax, Pa2 Pan, 
Pr(H\K) < \im Pr(Pai Pan\K). 

n - » GO 

Now suppose that 

(I) For all n, Pr(Pax Pan\K) = Pr(Pax\K) • ... • Pr(Pan\K) 

and that 

(E) For any m and n, Pr(Pam\K) = Pr{Pan\K). 

Then except for the uninteresting case that Pr(Pan\K) = 1 for each n, it follows that 

lim Pr(Pai Pan\K) = 0 
ft — » 00 

and thus that Pr(H\K) = 0. 
Popper's argument can be attacked in various places. Condition (E) is a form of 

exchangeability, and we have seen above that it cannot be expected to hold for all 
predicates. But Popper can respond that if (E) does fail then so will various forms of 
inductivism (e.g., Hume projectibility). The main place the inductivist will attack is 
at the assumption (I) of the independence of instances. Popper's response is that the 
rejection of (I) amounts to the postulation of something like a causal connection 
between instances. But this a red herring since the inductivist can postulate a prob-
abilistic dependence among instances without presupposing that the instances are 
cemented together by some sort of causal glue. 

In another attempt to show that probabilistic methods are ensnared in inconsis-
tencies, Popper cites Jeffreys's proof sketched above that a non-zero prior for (i)Pai 
guarantees that 

lim Pr{Pan+l\PaY Pan. K) = 1. 
n -» co 

But, Popper urges, what is sauce for the goose is sauce for the gander. For we can do 
the same for a Goodmanized P*, and from the limit statements we can conclude that 
for some r > 0.5 there is a sufficiently large N such that for any N' > N, the 
probabilities for Pa t and for P*a t are both greater than r, which is a contradiction 
for appropriately chosen P*. But the reasoning here is fallacious and there is in 
fact no contradiction lurking in Jeffreys's limit theorem since the convergence is 
not supposed to be uniform over different predicates—indeed, Popper's reasoning 
shows that it cannot be. 
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Of course, none of this helps with the difficult questions of which hypotheses 
should be assigned nonzero priors and how large the priors should be. The example 
from item 5 in Section 2.8 above suggests that the latter question can be ignored to 
some extent since the accumulation of evidence tends to swamp differences in priors 
and force merger of posterior opinion. Some powerful results from advanced prob-
ability theory show that such merger takes place in a very general setting (on this 
matter see Gaifman and Snir 1982). 

2. Probabilification vs. inductive support. Popper and Miller (1983) have ar-
gued that even if it is conceded that universal hypotheses may have nonzero priors and 
thus can be probabilified further and further by the accumulation of positive evidence, 
the increase in probability cannot be equated with genuine inductive support. This con-
tention is based on the application of two lemmas from the probability calculus: 

Lemma l.Pr(~H\E.K) x Pr(~E\K) = Pr(H V ~E\K) - Pr(H v ~E\E.K). 

Lemma 1 leads easily to 

Lemma 2. If Pr(H\E.K) < 1 and Pr(E\K) < 1 then 

Pr(H v ~E\E.K) < Pr(H v ~E\K). 

Let us apply Lemma 2 to the case discussed above where Bayesianism was used to 
show that under certain conditions the H-D method does lead to incremental confir-
mation. Recall that we assumed that 

H, K \- E; 1 > Pr{E\K) > 0; and 1 > Pr{H\K) > 0 

and then showed that 

Pr(HlE.K) > Pr(H\K), 

which the inductivists want to interpret as saying that E inductively supports H on the 
basis of K. Against this interpretation, Popper and Miller note that H is logically 
equivalent to (// V £). (// V ~-E). The first conjunct is deductively implied by E, 
leading Popper and Miller to identify the second conjunct as the part of H that goes 
beyond the evidence. But by Lemma 2 this part is countersupported by E, except in 
the uninteresting case that E.K makes H probabilistically certain. 

Jeffrey (1984) has objected to the identification of H v ~E as the part of H that 
goes beyond the evidence. To see the basis of his objection, take the case where 

H: {i)Pat and E: Pax Pan. 

Intuitively, the part of// that goes beyond this evidence is (/) [ (i > n) ... Pat] and 
not the Popper-Miller (i)Pa1 V —(Pal Pan). 

Gillies (1986) restated the Popper-Miller argument using a measure of inductive 
support based on the incremental model of confirmation: (leaving aside K) the support 
given by E to H is S{H, E) = Pr(H\E) - Pr(Z/). We can then show that 

Lemma 3. S(H, E) = S(H V E, E) 4- S(H V ~E, E). 
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Gillies suggested that S(H V EE, ) be identified as the deductive support given 
H by E and S(H V ~E, E) as the inductive support. And as we have already seen, 
in the interesting cases the latter is negative. Dunn and Hellman (1986) responded by 
dualizing. Hypothesis H is logically equivalent to (H.E) v (H.—E) and S(H, E) 
— S(H.E, E) + S(H. *~E, E). Identify the second component as the deductive coun-
tersupport. Since this is negative, any positive support must be contributed by the first 
component which is a measure of the nondeductive support. 

3. The problem of old evidence. In the Bayesian identification of the valid 
kernel of the H-D method we assumed that Pr(E\K) < 1, that is, there was some 
surprise to the evidence E. But this is often not the case in important historical 
examples. When Einstein proposed his general theory of relativity (H) at the close of 
1915 the anomalous advance of the perihelion of Mercury (E) was old news, that is, 
Pr(E\K) = 1. Thus, Pr{H\E.K) = Pr(H\K), and so on the incremental conception 
of confirmation, Mercury's perihelion does not confirm Einstein's theory, a result that 
flies in the face of the fact that the resolution of the perihelion problem was widely 
regarded as one of the major triumphs of general relativity. Of course, one could seek 
to explain the triumph in nonconfirmational terms, but that would be a desperate 
move. 

Garber (1983) and Jeffrey (1983) have suggested that Bayesianism be given a 
more human face. Actual Bayesian agents are not logically omniscient, and Einstein 
for all his genius was no exception. When he proposed his general theory he did not 
initially know that it did in fact resolve the perihelion anomaly, and he had to go 
through an elaborate derivation to show that it did indeed entail the missing 43" of arc 
per century. Actual flesh and blood scientists learn not only empirical facts but 
logicomathematical facts as well, and if we take the new evidence to consist in such 
facts we can hope to preserve the incremental model of confirmation. To illustrate, let 
us make the following assumptions about Einstein's degrees of belief in 1915: 

(a) Pr(H\K) > 0 (Einstein assigned a nonzero prior to his general theory.) 
(b) Pr(E\K) = 1 (The perihelion advance was old evidence.) 
(c) Pr(H h- E\K) < 1 (Einstein was not logically omniscient and did not invent his 

theory so as to guarantee that it entailed the 43".) 
(d) Pr[(H \- E)v (H \ E)\K] = 1 (Einstein knew that his theory entailed a 

definite result for the perihhelion motion.) 
(e) Pr[H.(Hh-~E)\K] = Pr[H.(H\- ~E).~E\K\ (Constrainton interpreting has 

logical implication.) 

From (a)-(e) it can be shown that Pr[H\(H \-E).K\. > Pr(H\K). So learning that his 
theory entailed the happy result served to increase Einstein's confidence in the theory. 

Although the Garber-Jeffrey approach does have the virtue of making Bayesian 
agents more human and, therefore, more realistic, it avoids the question of whether 
the perihelion phenomena did in fact confirm the general theory of relativity in favor 
of focusing on Einstein's personal psychology. Nor is it adequate to dismiss this 
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concern with the remark that the personalist form of Bayesianism is concerned pre-
cisely with psychology of particular agents, for even if we are concerned principally 
with Einstein himself, the above calculations seem to miss the mark. We now believe 
that for Einstein in 1915 the perihelion phenomena provided a strong confirmation of 
his general theory. And contrary to what the Garber-Jeffrey approach would suggest, 
we would not change our minds if historians of science discovered a manuscript 
showing that as Einstein was writing down his field equations he saw in a flash of 
mathematical insight that H t— E or alternatively that he consciously constructed his 
field equations so as to guarantee that they entailed E. "Did E confirm H for Ein-
stein?" and "Did learning that H\— E increase Einstein's confidence in / / ? " are two 
distinct questions with possibly different answers. (In addition, the fact that agents are 
allowed to assign Pr (H \- E\K)<\ means that the Dutch book justification for the 
probability axioms has to be abandoned. This is anathema for orthodox Bayesian 
personalists who identify with the betting quotient definition of probability.) 

A different approach to the problem of old evidence is to apply the incremental 
model of confirmation to the counterfactual degrees of belief that would have ob-
tained had E not been known. Readers are invited to explore the prospects and 
problems of this approach for themselves. (For further discussion of the problem of 
old evidence, see Howson 1985, Eells 1985, and van Fraassen 1988.) 

2.11 CONCLUSION 

The topic of this chapter has been the logic of science. We have been trying to 
characterize and understand the patterns of inference that are considered legitimate in 
establishing scientific results—in particular, in providing support for the hypotheses 
that become part of the corpus of one science or another. We began by examining 
some extremely simple and basic modes of reasoning—the hypothetico-deductive 
method, instance confirmation, and induction by enumeration. Certainly (pace Pop-
per) all of them are frequently employed in actual scientific work. 

We find—both in contemporary science and in the history of science—that 
scientists do advance hypotheses from which (with the aid of initial conditions and 
auxiliary hypotheses) they deduce observational predictions. The test of Einstein's 
theory of relativity in terms of the bending of starlight passing close to the sun during 
a total solar eclipse is an oft-cited example. Others were given in this chapter. 
Whether the example is as complex as general relativity or as simple as Boyle's law, 
the logical problems are the same. Although the H-D method contains a valid 
kernel—as shown by Bayes's rule—it must be considered a serious oversimplification 
of what actually is involved in scientific confirmation. Indeed, Bayes's rule itself 
seems to offer a schema far more adequate than the H-D method. But—as we have 
seen—it, too, is open to serious objections (such as the problem of old evidence). 

When we looked at Hempel's theory of instance confirmation, we discussed an 
example that has been widely cited in the philosophical literature—namely, the gen-
eralization "All ravens are black." If this is a scientific generalization, it is certainly 
at a low level, but it is not scientifically irrelevant. More complex examples raise the 
same logical problems. At present, practicing scientists are concerned with—and 
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