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Causality in Economics and Econometrics 
 

 

1. Philosophers of Economics and Causality 

The full title of Adam Smith’s  great foundational work, An Inquiry into the Nature and 

Causes of the Wealth of Nation (1776), illustrates the centrality of causality to economics.  

The connection between causality and economics predates Smith.  Starting with Aristotle, 

the great economists are frequently also the great philosophers of causality.  Aristotle’s 

contributions to economics are found principally in the Topics, the Politics, and the 

Nicomachean Ethics, while he lays out his famous four causes (material, formal, final, 

and efficient) in the Physics.  Material and formal causes are among the concerns of 

economic ontology, a subject addressed by philosophers of economics (see e.g., Mäki 

2001) albeit rarely by practicing economists.  Sometimes, as for example in Karl Marx’s 

grand theory of capitalist development, economists have appealed to final causes or 

teleological explanation (for a defense, see Cohen 1978; for a general discussion, see 

Kincaid 1996).  But for the most part, taking physical sciences as a model, causal 

modeling in economics deals with efficient causes:  What is it that makes things happen?  

What explains change?  (See Bunge 1963 for a broad account of the history and 

philosophy of causal analysis.)   

 The greatest of the philosopher/economists, David Hume, set the tone for much of 

the later development of causality in economics.  On the one hand, economists inherited 

from Hume the sense that practical economics was essentially a causal science.  In “On 

Interest,” Hume (1742, p. 304) writes: 

it is of consequence to know the principle whence any phenomenon arises, and to 

distinguish between a cause and a concomitant effect.  Besides that the speculation 

is curious, it may frequently be of use in the conduct of public affairs.  At least, it 
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must be owned, that nothing can be of more use than to improve, by practice, the 

method of reasoning on these subjects, which of all others are the most important; 

though they are commonly treated in the loosest and most careless manner.  

 

On the other hand, Hume doubted whether we could ever know the essential nature of 

causation “in the objects” (Hume 1739, p. 165).  Coupled with a formidable critique of 

inductive inference more generally, Hume’s skepticism has contributed to a wariness 

about causal analysis in many sciences, including economics (Hume 1739, 1777).  The 

tension between the epistemological status of causal relations and their role in practical 

policy runs through the history of economic analysis since Hume. 

 

2. History 

2.1 HUME’S FOUNDATIONAL ANALYSIS 

Although Hume was an economist and historian, physical illustrations serve as his 

paradigm causal relationships.  A (say, a billiard ball) strikes B (another ball) and causes 

it to move.  Any analysis must address two key features of causality:  First, causes are 

asymmetrical (in general, if A causes B, B does not cause A).  Hume sees temporal 

succession (the movement of A precedes the movement of B) as accounting for 

asymmetry.  Second, causes are effective.  A cause must be distinguished from an 

accidental correlation and must bring about its effect.  Hume sees spatial contiguity (the 

balls touch) and necessary connection (the movement of B follows of necessity from the 

movement of A) as distinguishing causes from accidents and establishing their 

effectiveness. 

 Hume was famously skeptical of any idea that could not be traced either to logical 

or mathematical deduction or to direct sense experience.  Hume asks, whence comes the 

idea of the necessary connection of cause and effect?  It cannot be deduced from first 
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principles.  So, he argues that our idea of necessary connection, which he concedes is the 

most characteristic element of causality, can arise only from our experience of the 

constant conjunction of particular temporal sequences.  But this then implies that 

causality stands on a very weak foundation.  For one corollary of Hume’s belief that all 

ideas are based either in logic or sense experience was that we do not have any secure 

warrant for inductive inference.  Neither logic nor experience (unless we beg the question 

by implicitly assuming the truth of induction) gives us secure grounds from observing 

instances to inferring a general rule.  Therefore, what we regard as necessary connection 

in causal inference is really more of habit of mind without clear warrant.  Causes may be 

necessarily connected to effects; but, for Hume, we shall never know in what that 

necessary connection consists.   

 While later philosophers have differed with Hume on the analysis of causality, his 

views were instrumental in setting the agenda, not only for philosophical discussions but 

for practical causal analysis as well. 

 

2.2 THE NINETEENTH CENTURY:  LOGIC AND STATISTICS 

Even more influential than Hume in shaping economics, John Stuart Mill, another 

philosopher/economist, was less skeptical about causal inference in general, but more 

skeptical about its application to economics.  In his System of Logic (1851), Mill 

advanced his famous canons of induction:  the methods of (i) agreement, (ii) difference, 

(iii) joint (or double) agreement and difference, (iv) residues, and (v) concomitant 

variations.  For example, according to the method of difference, if we have two sets of 

circumstances, one in which a phenomenon occurs and one in which it does not, and the 

circumstances agree in all but one respect, that respect is the cause of the phenomenon.  
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Mill’s canons are essentially abstractions from the manner in which causes are inferred in 

controlled experiments.  As such, Mill doubted that the canons could be easily applied to 

social or economic situations, in which a wide variety of uncontrolled factors are 

obviously relevant.  Mill argued in his Principles of Political Economy (1848) that 

economics was an “inexact and separate science,” whose general principles were 

essentially known a priori and which held only subject to ceteris paribus clauses (see 

Hausman 1992).  Mill’s apriorism proved to be hugely influential in later economics.  

Lionel Robbins (1935) and the Austrian economists, such as Mises (1966), took it to the 

extreme, denying that economics could be an empirical discipline.  It also influenced 

those economists who see economic theory as similar to physical theory as a domain of 

universal laws. 

 Other 19
th

 century economists were less skeptical about the application of causal 

reasoning to economic data.  For instance, W. Stanley Jevons (1863) pioneered the 

construction of index numbers as the core element of an attempt to prove the causal 

connection between inflation and the increase in world-wide gold stocks after 1849.  

Jevon’s investigation can be interpreted as an application of Mill’s method of residues 

(see Hoover and Dowell 2001).  He saw the various idiosyncratic relative price 

movements owing to supply and demand for particular commodities as canceling out to 

leave the common factor that could only be the effect of changes in the money stock. 

 The 19
th

 century witnessed extensive development in the theory and practice of 

statistics (Stigler 1986).  Inference based on statistical distributions and correlation 

measures were closely connected to causality.  Adolphe Quetelet envisaged the 

inferential problem in statistics as one of distinguishing among constant, variable, and 
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accidental causes (Stigler 1999, p. 52).  The economist Francis Ysidro Edgeworth 

pioneered tests of statistical significance (in fact Edgeworth may have been the first to 

use this phrase).  He glossed the finding of a statistically significant result as one that 

“comes by cause” (Edgeworth 1885, pp. 187-188). 

 

2.3 THE TWENTIETH CENTURY:  CAUSALITY AND IDENTIFICATION 

Further developments of statistical techniques, such as multiple correlation and 

regression, in the 20
th

 century were frequently associated with causal inference.  It was 

fairly quickly understood that, unlike correlation, regression has a natural direction:  the 

regression of Y on X does not produce coefficient estimates that are the algebraic inverse 

of those from the regression of X on Y.  The direction of regression should respect the 

direction of causation.   

 By the early 20
th

 century, however, the dominant vision of economics – equally 

for advocates of partial equilibrium analysis, such as Marshall (1930), as for advocates of 

general equilibrium analysis, such as Walras (1954) – was one in which prices and 

quantities are determined simultaneously.  Simultaneity does not necessarily rule out 

causal order, though it does complicate causal inference.  Although regressions may have 

a natural causal direction, there is nothing in the data on their own that reveal which 

direction is the correct – each is an equally eligible rescaling of a symmetrical and 

noncausal correlation.  This is a problem of observational equivalence.  And it is the 

obverse side of the now familiar problem of econometric identification:  in this case, how 

can we distinguish a supply curve from a demand curve?  The problem of identification 

was pursued through most of the first half of the 20
th

 century until the fairly complete 

treatment by the Cowles Commission at mid-century (Koopmans 1950; Hood and 
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Koopmans 1953; see Morgan 1990 for a thorough treatment of the history of the 

identification problem). 

 The standard solution to the identification problem is to look for additional causal 

determinants that discriminate between otherwise simultaneous relationships.  Both the 

supply of milk and demand for milk depend on its own price.  If, however, the supply 

also depends on the price of alfalfa used to feed the cows and the demand also on the 

daily high temperature (which affects the demand for milk to make ice cream), then 

supply and demand curves can be identified separately.  Identification can be viewed 

through the glasses of simultaneous equations, pushing causality into the background, or 

it can be viewed as a problem in causal articulation.  In the first case, economists 

frequently use the language of exogenous variables (the price of alfalfa; the temperature) 

and endogenous variables (the price and quantity of milk).  Exogenous variables can also 

be regarded as the causes of the endogenous variables.  From the 1920s to the 1950s, 

different economists placed different emphasis on the causal aspects of identification 

(Morgan (1990) and the various papers reprinted in Hendry and Morgan (1995)).   

 Modern econometrics can be dated from the development of structural 

econometric models following the pioneering work in the 1930s of Jan Tinbergen, the 

conceptual foundations of probabilistic econometrics in Trgyve Haavelmo’s (1944) 

“Probability Approach to Econometrics,” and the technical elaboration of the 

identification problem in the two Cowles Commission volumes.  Structural models did 

not in themselves necessarily favor the language of identification over the language of 

causality.  Indeed, in Tinbergen’s (1951) textbook, dynamic, structural models are 

explicated with a diagram that uses arrows to indicate causal connections among time-
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dated variables.  Nevertheless, after the econometric work of the Cowles Commission, 

two approaches can be clearly distinguished.   

 One approach, associated with Hermann Wold and known as process analysis, 

emphasized the asymmetry of causality, typically grounded it in Hume’s criterion of 

temporal precedence (Morgan 1991).  Wold’s process analysis belongs to the time-series 

tradition that ultimately produced Granger causality and the vector autoregression (see 

Section 3 below).   

 The other approach, associated with the Cowles Commission, related causality to 

the invariance properties of the structural econometric model.  This approach emphasized 

the distinction between endogenous and exogenous variables and the identification and 

estimation of structural parameters.  Implicitly, structural modelers accepted Mill’s a 

priori approach to economics.  While they differed from Mill in their willingness to 

conduct empirical investigations, the selection of exogenous (or instrumental) variables 

was seen to be the province of a priori economic theory – a maintained assumption rather 

than something to be learned from data itself.  In his contribution to the Cowles 

Commission volume, Herbert Simon (1953) showed that causality could be defined in a 

structural econometric model not only between exogenous and endogenous variables, but 

also among the endogenous variables themselves.  And he showed that the conditions for 

a well-defined causal order are equivalent to the well-known conditions for identification.  

Despite the equivalence, with the demise of process analysis and the ascendancy of 

structural econometrics – aided indirectly perhaps by a revival of Humean causal 

skepticism among logical positivist philosophers of science – causal language in 

economics virtually collapsed between 1950 and about 1990 (Hoover 2004). 
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3. Alternative Approaches to Causality in Economics 

Different approaches to causality can be classified along two lines as in Table 1.  One the 

one hand, approaches may emphasize structure or process.  On the other hand, 

approaches may rely on a priori identifying assumptions or they may seek to infer causes 

from data.  The upper left cell, the a priori structural approach, represented by the 

Cowles Commission, dominated economics for most of the postwar period.  But since we 

already discussed it at some length in Section 2 and since it was largely responsible for 

turning the economics profession away from explicit causal analysis, we add nothing 

more about it here and instead turn to the other cells in Table 1. 

 

3.1 THE INFERENTIAL STRUCTURAL APPROACH 

The most important of the inferential structural approaches is due to Simon (1953).  

Simon eschews temporal order as a basis for causal asymmetry and, instead, looks to 

recursive structure.  As we observed in Section 2, Simon’s account is closely related to 

the Cowles Commission structural approach.  Consider the bivariate system: 

 

(1)     ttt XY 1εθ += , 

 

(2)   ttX 2ε= , 

 

where the random error terms εit are independent, identically distributed and θ is a 

parameter.  Simon says that Xt  causes Yt, because Xt is recursively ordered ahead of Yt.  

One knows all about Xt without knowing about Yt, but one must know the value of Xt to 
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determine the value of Yt.  Equations (1) and (2) also appear to show that any intervention 

in (2), say a change in the variance of ε2t, would transmit to (1); while any intervention in 

(1), say a change in θ or the variance of ε1t, would not transmit to (2).  Apparently, Xt 

could then be used to control Yt. 

 Unfortunately, merely being able to write an accurate description of the two 

variables in the form of (1) and (2) does not guarantee either the apparent asymmetry of 

information or control.  Consider the following related system: 

 

(3)     ttY 1ω= , 

 

(4)   ttt YX 2ωδ += , 

 

where 
)var()var(

)var(

12

2

2

εεθ

εθ
δ

+
= , ttt 211 θεεω += , and ttt 122 )1( δεεδθω −−= .  It is easy to 

show that ω1t and ω2t are uncorrelated; so that (3) and (4) have a form analogous to (1) 

and (2) with the causal roles reversed.  Apparently, Yt causes Xt on Simon’s criterion, 

even though (3) and (4) have exactly the same likelihood function (i.e., the same reduced 

form) and so describe the data equally well.  While it looks like the key parameters for 

(3) and (4) are derived from those of (1) and (2), we could have taken (3) and (4) as the 

starting point and derived (1) and (2) symmetrically.  What we would like to do is to 

replace the equal signs with arrows that show that the causal direction runs from the 

right-hand to the left-hand sides in the regression equations in one of the systems, but not 

in the other.  Unfortunately, there is no way to do this, no choosing between the systems, 
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on the basis of a single set of data by itself.  This is the problem of observational 

equivalence again. 

 The a priori Cowles Commission approach relies on economic theory to provide 

appropriate identifying assumptions to resolve the observational equivalence.  Sims 

(1980) attacked the typical application of the Cowles Commission approach to structural 

macroeconometric models as relying on “incredible” identifying assumptions:  economic 

theory was simply not informative enough to do the job.  But Simon, who was otherwise 

supportive of the conception of causality in the Cowles Commission took a different tack.   

 Simon sees the problem as choosing between two alternative sets of parameters:  

which set contains the structural parameters, {θ and the variances of the εit} or {δ and the 

variances of the ωit}?  Simon suggested that experiments – either controlled or natural – 

could help to decide.  If, for example, an experiment could alter the conditional 

distribution of Xt without altering the marginal distribution of Yt, then it must be that Yt 

causes Xt, because this would be possible only if a structure like (3) and (4) characterized 

the data.  If it did, a change in the conditional distribution would involve either δ or the 

variance of ω2t, neither of which would affect the variance of ω1t.  In contrast, if (1) and 

(2) truly characterized the causal structure of the data, a change to the conditional 

distribution of Xt would, in fact, involve a change to the variance of ε2t, which, according 

to the equivalences above, would alter either δ or the variance of ω2t.  Similar 

relationships of stability and instability in the face of changes to the marginal distribution 

can also be demonstrated (Hoover 2001, chapter 7).  The appeal to experimental evidence 

is what marks Simon’s approach out as inferential rather than a priori. 
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 Hoover (1990, 2001) generalizes Simon’s approach to the type of nonlinear 

systems of equations found in modern rational-expectations models.  He shows that 

Simon’s idea of natural experiments can operationalized by coordinating historical, 

institutional, or other non-statistical information with information from structural break 

tests on what, in effect, amounts to the four regressions corresponding to (1)-(4) above 

generalized to include lagged dynamics.  With allowances for complications introduced 

by rational expectations, the key idea is that, in the true causal order, interventions that 

alter the parameters governing the true marginal distribution do not transmit forward to 

the conditional distribution (characterized by (1) or (4)) nor do interventions in the true 

conditional distribution transmit backward to the marginal distribution (characterized by 

(2) or (3)).  Since the true structural parameters are not known a priori, non-statistical 

information is important in identifying an intervention as belonging to the process 

governing one variable or another. 

 Although avoiding the term “causality,” Favero and Hendry (1992) analysis of the 

Lucas critique in terms of “superexogeneity” is also a variant on Simon’s causal analysis 

(Ericsson and Irons 1995; Hoover 2001, chapter 7).  Superexogeneity is essentially an 

invariance concept (Engle, Hendry, and Richard 1983).  Favero and Hendry find 

evidence against the Lucas critique (noninvariance in the face of policy regime changes) 

in the superexogeneity of conditional probability distributions in the face of structural 

breaks in marginal distributions – the same sort of evidence that Hoover cites as helping 

to identify causal direction. 

 The recent revival of causal analysis in microeconomics in the guise of “natural 

experiments,” although apparently developed independently of Simon, nonetheless 
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proceeds in much the same spirit as Hoover’s version of Simon’s approach (Angrist and 

Krueger 1999, 2001).  This literature typically employs the language of instrumental 

variables.  A natural experiment is a change in a policy or a relevant environmental factor 

that can be identified non-statistically.  Packaged as an econometric instrument, the 

experiment can be used – in much the same way that variations in alfalfa prices and 

temperature were used in the example in Section 2 – to identify the underlying 

relationships and to measure the causally relevant parameters.   

 

3.2 THE INFERENTIAL PROCESS APPROACH 

Perhaps the most influential explicit approach to causality in economics is due to Clive 

W. J. Granger (1969).  Granger causality is an inferential approach, in that it is data-

based without direct reference to background economic theory; and it is a process 

approach, in that it was developed to apply to dynamic time-series models (see 

Kuersteiner’s entry “Granger Causality” in this dictionary for technical details).  Granger-

causality is an example of the modern probabilistic approach to causality, which is a 

natural successor to Hume (e.g., Suppes 1970).  Where Hume required constant 

conjunction of cause and effect, probabilistic approaches are content to identify cause 

with a factor that raises the probability of the effect:  A causes B if P(B|A) > P(B), where 

the vertical “|” indicates “conditional on”.  The asymmetry of causality is secured by 

requiring the cause (A) to occur before the effect (B).
1
   

 Granger’s (1980) definition is more explicit about temporal dynamics than is the 

generic probabilistic account, and it is cast in terms of the incremental predictability of 

one variable conditional on another:   

                                                 
1
 The probability criterion is not enough on its own to produce asymmetry since P(B|A) > P(B) implies  

P(A |B) > P(A). 
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Xt Granger-causes Yt+1 if P(Yt+1| all information dated t and earlier)  

 ≠ P(Yt+1| all information dated t and earlier omitting information about X). 

 

This definition is conceptual, as it is impracticable to condition on all past information.   

 In practice, Granger-causality tests are typically implemented through bivariate 

regressions: 

 

(5)      tttt XYY 1112111 υ+Π+Π= −− , 

(6)    tttt XYX 2122121 υ+Π+Π= −− , 

 

where the Πij are parameters, and the υit are random error terms.  In practice, lag lengths 

may be larger than one, but far less than the infinity implicit in the general definition.  Xt 

Granger-causes Yt+1 if Π12 ≠ 0, and Yt Granger-causes Xt+1 if Π21 ≠ 0. 

 Christopher Sims (1972) famously used Granger-causality to demonstrate the 

causal priority of money over nominal income.  Later, as part of a generalized critique of 

structural econometric models, Sims (1980) advocated vector autoregressions (VARs) – 

atheoretical time-series regressions analogous to equations (1) and (2), but generally 

including more variables with lagged values of each appearing in each equation.  In the 

VAR context, Granger-causality generalizes to the multivariate case. 

 While Granger-causality has something useful to say about incremental 

predictability, there is no close mapping between Granger-causality and structural notions 
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of causality on either the Cowles Commission or Simon’s accounts (Jacobs, Leamer, and 

Ward 1979).  Consider a structural model: 

 

(7)      ttttt XYXY 1112111 εββθ +++= −− , 

(8)    ttttt XYYX 2122121 εββγ +++= −− , 

where ε1t and ε2t are identically distributed, independent random errors and θ, γ, and the 

βijs are structural parameters.  The independence of the parameters and the error terms 

implies that causality runs from the right-hand to the left-hand sides of each equation.  

Equations (5) and (6) can be seen as the reduced forms of (7) and (8). 

 We focus on X causing Y.  X structurally-causes Y if either θ or β12 ≠ 0.  And X 

Granger-causes Y if 
θγ

θββ

−

+
=Π

1

2212
12  ≠ 0.  Thus, if X Granger-causes Y, then X 

structurally causes Y.  Note, however, that this result is particular to the case in which (7) 

and (8) represents the universe, so that (5) and (6) represent the complete conditioning on 

past histories of relevant variables.  If the universe is more complex and the estimated 

VAR does not capture the true reduced forms of the structural system, which in practice 

they may not, then the strong connection suggested here does not follow. 

 More interestingly, even if (5)-(8) are complete, structural causality does not 

necessarily imply Granger-causality.  Suppose that β12 = β22 = 0, but θ ≠ 0, then X 

structurally causes Y, but since Π12 = 0, X does not Granger-cause Y.   

 Now suppose that X does not Granger-cause Y.  It does not necessarily follow that 

X does not structurally cause Y, since if θ, β12, and β22 ≠ 0, and –β12/β22 = θ, then it will 

still be true that Π12 = 0.  This may appear to be an odd special case, but in fact 
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conditions such as –β12/β22 = θ arise commonly in optimal control problems in 

economics.   

 A simple physical example makes it clear what is happening.  Suppose that X 

measures the direction of the rudder on a ship and Y the direction of the ship.  The ship is 

pummeled by heavy seas.  If the helmsman is able to steer on a straight course, 

effectively moving the rudder to exactly cancel the shocks from the waves, the direction 

of the rudder (in ignorance of the true values of the shocks) will not predict the course of 

the ship.  The rudder would be structurally effective in causing the ship to turn, but it 

would not Granger-cause the ship’s course. 

 

3.3 THE A PRIORI PROCESS APPROACH 

The upper right-hand cell of Table 1 is represented by Arnold Zellner’s (1979) account of 

causality (cf. Keuzenkamp 2000, chapter 4, section 4).  Zellner’s notion of causality is 

borrowed from the philosopher Herbert Feigl (1953, p. 408), who defines causation “. . . 

in terms of predictability according to law (or more adequately, according to a set of 

laws).”  On the one hand, Zellner opposes Simon and sides with Granger:  predictability 

is a central feature of causal attribution, which is why his is a process account.  On the 

other hand, he opposes Granger and sides with Simon:  an underlying structure (a set of 

laws) is a crucial presupposition of causal analysis, which is why his is an a priori 

account. 

 Much obviously depends on what a law is.  Zellner’s own view is that a law is a 

(probabilistic) description of a succession of states of the world that holds for many 

possible boundary conditions and covers many possible circumstances.  He couches his 

position in an explicitly Bayesian theory of inference.  Feigl identifies causality with 
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lawlikeness or predictability.  It is the fact that formulae fit previously unexamined cases, 

as well as examined ones, that constitutes their lawlikeness.  This is close to Simon’s 

invariance criterion (the true causal order is the one that is invariant under the right sort 

of intervention).   

 The central problem, then, is how to distinguish laws from false generalizations or 

accidental regularities – that is, how to distinguish conditional relations invariant to 

interventions from regularities that are either not invariant or are altogether adventitious.  

Zellner believes that a theory serves as the basis for discriminating laws from casual 

generalizations.  Although Zellner’s approach permits us to learn some things from the 

data, in keeping with the spirit of Bayesian inference, it does so within a narrowly 

defined framework (cf. Savage’s (1954, pp. 82-91) “small world” assumption).  

Economic theory in Zellner’s account restricts the scope of an investigation a priori.   

 Zellner objects to Granger-causality for two reasons.  First, it is not satisfactory to 

identify cause with temporal ordering, as temporal ordering is not the ordinary, scientific 

or philosophical foundation of the causal relationship.  Second, Granger’s approach is 

atheoretical.  In order to implement it practically, an investigator must impose restrictions 

– limit the information set to a manageable number of variables, consider only a few 

moments of the probability distribution (in our exposition, just the mean), and so forth.  

For Zellner, if these restrictions cannot be explained theoretically, Granger’s methods 

will discover only accidental regularities. 

 Zellner explicitly criticizes Granger for ignoring the need for theoretical basis for 

empirical investigation – implicitly focusing on only one side of a process in which 

theory informs empirics and empirics informs theory.  He criticizes Simon for defining 
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cause to be a formal property of a model (recursive order) without making essential 

reference to empirical reality.  Zellner’s criticism is, however, more aptly directed at the 

Cowles Commission approach, since (as we saw in Section 3.1) Simon distinguishes 

himself through tying causal order to empirical inference. 

 

3.4 STRUCTURAL VECTOR AUTOREGRESSIONS 

Not all approaches to causality fall quite neatly into the cells of Table 1; or more to the 

point, an approach that falls into one cell may morph into one that falls into another cell.  

The history of Sims’s VAR program is an important case.   

 Sims (1980) advocated VARs as a reaction to the manner in which the Cowles 

Commission program, which identified structural models through a priori theory, had 

been implemented (see Section 3.2).  From a causal perspective, it was closely related to 

Granger’s analysis.  Starting with VAR such as equations (5) and (6), Sims wished to 

work out how various “shocks” would affect the variables of the system.  This is 

complicated by the fact that the error terms in (5) and (6), which might be taken to 

represent the shocks, are not in general independent, so that a shock to one is a shock to 

both, depending on how correlated they are.  Sims’s initial solution was to impose an 

arbitrary orthogonalization of the shocks (a Choleski decomposition).  In effect, this 

meant transforming (5) and (6) into a system like (6) and (7) and setting either θ or γ to 

zero.  This amounts to imposing a recursive order on Xt and Yt, such that the covariance 

matrix of the error terms is diagonal (i.e., ε1t and ε2t are uncorrelated).  A shock to X can 

then be represented by a realization of ε1t and a shock to Y by a realization of ε2t.   

 Initially, Sims treated the choice of recursive order as a matter of indifference.  

Criticizing the VAR program from the point of view of structural models, Leamer (1985) 
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and Cooley and LeRoy (1985) pointed out that the substantive results (e.g., impulse-

response functions and innovation accounts) depend on which recursive order is chosen.  

Sims (1982, 1986) accepted the point and henceforth advocated structural vector 

autoregressions (SVARs).  SVARs can be identified through the contemporaneous causal 

order only.  So, for example, to identify (5) and (6), it is enough to assume that either θ or 

γ in (7) or (8) is zero; one need not make any assumptions about the βijs.  Ironically, since 

the initial impulse behind the VAR program was to avoid theoretically tenuous 

identifying assumptions, the choice of restrictions on contemporaneous variables used to 

transform the VAR into the SVAR are typically only weakly supported by economic 

theory.   

 Nevertheless, the move from the VAR to the SVAR is a move from an inferential 

to an a priori approach.  It is also a move from a fully non-structural, process approach to 

a partially structural approach, since the structure of the contemporaneous variables, 

though not of the lagged variables, is fully specified.  The SVAR approach can, therefore, 

be seen as straddling the cells on the first line of Table 1. 

 

3.5 THE GRAPH-THEORETIC APPROACH TO CAUSAL INFERENCE 

A final approach to causality in economics sometimes provides another example of an 

inferential structural approach, and sometimes straddles the cells on the second line of 

Table 1.  Graph-theoretic approaches to causality were first developed outside of 

economics (Pearl 2000; Spirtes, Glymour, and Scheines 2000), but have recently been 

applied within economics (Swanson and Granger 1997, Akleman, Bessler, and Burton 

1999; Bessler and Lee 2002; Demiralp and Hoover 2003). 
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 The key ideas of the graph-theoretic approach are simple.  (See Demiralp and 

Hoover (2003) or Hoover (2005) for a detailed discussion).  Any structural model can be 

represented by a graph in which arrows indicate the causal order.  Equations (1) and (2) 

are represented by X → Y and equations (3) and (4) by Y → X.  More complicated 

structures can be represented by more complicated graphs.  Simultaneity, for instance, 

can be represented by double-headed arrows.  The graphs allows us easily to see the 

dependence or independence among variables.  Pearl (2000) and Sprites et al. (2000) 

demonstrate the isomorphism between causal graphs and the independence relationships 

encoded in probability distributions.  This isomorphism allows conclusions about 

probability distributions to be derived from theorems proven using the mathematical 

techniques of graph theory.  

 Many of the results of graph-theoretic analysis are straightforward.  Suppose that  

A → B → C (that is, A causes B causes C).  A and C would be probabilistically 

dependent, but conditional on B, they would be independent.  Similarly for A ← B ← C.  

In each case, B is said to screen A from C.  Suppose that A ← B → C.  Then, once again 

A and C would be dependent, but conditional on B, they would be independent.  B is said 

to be the common cause of A and C.  Now suppose that A and B are independent 

conditional on sets of variables that exclude C or its descendants, and A → C ← B, and 

none of the variables that cause A or B directly causes C.  Then, conditional on C, A and 

B are dependent.  C is called an unshielded collider on the path ACB.  (A shielded 

collider would have a direct link between A and B.)  These are the simplest relationships 

of probabilistic dependence and independence.  More complex ones may also obtain in 
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which A is independent of B only conditional on more than one other variable (say, C and 

D). 

 A number of causal search algorithms have been developed (Sprites et al. 2000).  

These start with information about correlations (or other tests of unconditional and 

conditional statistical independence) among variables.  The most common of these, the 

PC algorithm, assumes that graphs are strictly recursive (known in the literature as 

acyclical) and starts with a graph in which all variables are causally connected with an 

unknown causal direction.  It then tests for independence among pairs of variables, 

conditioning on sets of zero variables, then one, then two, and so forth until the set of 

variables is exhausted.  Whenever it finds independence, it removes the causal connection 

between the variables in the graph. Once the graph is pared down as far as can be, it 

considers triples of variables in which two are conditionally independent but are 

connected through a third.  If conditioning on that third variable renders the variables 

conditionally dependent, then that variable is unshielded collider and it is connected to 

the other two variables with causal arrows running toward it.  After all the unshielded 

colliders have been identified, further logical analysis can be used to orient additional 

causal arrows.  For example, we might reason as follows:  suppose we have a triple A → 

C ― B;  unless the causal arrow runs away from C toward B, C would be identified as an 

unshielded collider; but C was not identified as an unshielded collider earlier in the 

search; therefore, the causal arrow must run away from C toward B. 

 Sometimes the data allow the complete orientation of a causal graph, but 

sometimes some causal connections are left undirected.  In this case, the graph marks out 

an equivalence class, and the algorithm has identified 2
n
 causal graphs consistent with the 



Causality in Economics and Econometrics   

K.D. Hoover 

9 June 2006 

 21 

empirical probability distribution, where n = the number of undirected causal 

connections. 

 While most applications of graph-theoretic methods assume that the true causal 

structures are recursive (i.e., strictly acylical), economics frequently treats variables that 

are cyclical or simultaneously determined.  Although the recursiveness assumption is 

restrictive, it is an assumption that is also frequently made in the SVAR literature.  Some 

progress has been made in developing graph-theoretic search algorithms for cyclical or 

simultaneous causal systems (Pearl 2000, pp. 95-96, 142-143; Richardson 1996; 

Richardson and Spirtes 1999). 

 Swanson and Granger (1997) showed that estimates of the error terms of the VAR 

(the υit in equations (5) and (6)) can be treated as the original time-series variables purged 

of their dynamics.  A causal order identified on such variables corresponds to the causal 

order necessary to convert a VAR into an SVAR.  Demiralp and Hoover (2003) present 

Monte Carlo evidence that the PC algorithm is effective at selecting the true causal 

connections among variables and, when signal strengths are high enough, moderately 

effective at directing them correctly.  Search algorithms can, therefore, reduce or even 

eliminate the need to appeal to a priori theory when identifying the causal order of an 

SVAR. 

 Where Simon’s approach looked for relatively important interventions as a basis 

for causal inference to a structure, the graph-theoretic approach uses relatively routine 

random variations to identify patterns of conditional independence that map out causal 

structures.  The two approaches are complementary:  Simon’s approach may be used to 
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resolve the observational equivalence reflected in causal connections that remain 

undirected after the application of a causal search algorithm. 
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Table 1. Classification of Approaches to Causality in Economics 

 Structural Process 

A Priori 
Cowles Commission: 

    Koopmans (1953); Hood and Koopmans (1953) 

              Zellner (1979) 

Inferential 

Simon (1953) 

Hoover (1990, 2001) 

Favero and Hendry (1992) 

Natural Experiments:   

    Angrist and Krueger (1999, 2001) 

              Granger (1969) 

              Vector Autoregressions: 

               (Sims 1980) 

 

 


